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RIGIDITY OF ELLIPTIC GENERA: FROM NUMBER THEORY TO

GEOMETRY AND BACK.

KATHRIN BRINGMANN, ALEXANDER CAVIEDES CASTRO,
SILVIA SABATINI, MARKUS SCHWAGENSCHEIDT

Abstract. In this paper we derive topological and number theoretical consequences of
the rigidity of elliptic genera, which are special modular forms associated to each compact
almost complex manifold. In particular, on the geometry side, we prove that rigidity
implies relations between the Betti numbers and the index of a compact symplectic
manifold of dimension 2n admitting a Hamiltonian action of a circle with isolated fixed
points. We investigate the case of maximal index and toric actions. On the number
theoretical side we prove that from each compact almost complex manifold of index
greater than one, that can be endowed with the action of a circle with isolated fixed
points, one can derive non-trivial relations among Eisenstein series. We give explicit
formulas coming from the standard action on CPn.

Contents

1. Introduction and statement of results 2
1.1. Motivation 2
1.2. From number theory to geometry 3
1.3. From geometry to number theory 4
1.4. Outline of the paper 6
2. Background 7
2.1. The S1-actions on almost complex and symplectic manifolds 7
2.2. Equivariant cohomology, characteristic classes, and K-theory 8
2.3. Modular forms for Γ1(N) 11
2.4. Genera associated to formal power series 12
2.5. The elliptic genus of level N 14
2.6. The values of the elliptic genus at the cusps 17
2.7. The elliptic genus as the index of a virtual vector bundle 18
2.8. The type of the action 20
2.9. The rigidity of the elliptic genus 22
3. From number theory to geometry 24
3.1. From the index to the Betti numbers: First consequences 24
3.1.1. An application to smooth reflexive polytopes 26
3.2. From the index to the Betti numbers: A closer look 27

Date: January 31, 2020.
2010 Mathematics Subject Classification. 58J26, 57R20, 37J15.
Key words and phrases. Betti numbers, circle actions, Eisenstein series, Elliptic genera, index, Modular

forms.
This research was supported by the SFB-TRR 191 Symplectic Structures in Geometry, Algebra and

Dynamics, funded by the DFG.

1

http://arxiv.org/abs/2001.11072v1


2 K. BRINGMANN, A. CAVIEDES CASTRO, S. SABATINI, M. SCHWAGENSCHEIDT

4. From geometry to number theory: Relations of Eisenstein series 35
4.1. Formulas to compute the coefficients qI for coadjoint orbits 36
4.2. Explicit computation of relations among Eisenstein series 39
References 40

1. Introduction and statement of results

1.1. Motivation. The goal of this paper is to derive topological and number theoretical
consequences of the rigidity of elliptic genera on almost complex manifolds acted on by a
circle.

Let (M, J) be a compact almost complex manifold of dimension 2n. The elliptic genus
of level N , denoted by ϕN (M), is a certain modular form (for the group Γ1(N)) of weight
n associated to M. Although its formal definition may seem convoluted (see Section 2.5),
its original inspiration comes from an intuition of Witten [36] who heuristically defined the
Dirac operator on the free loop space LM of M. In a similar fashion, Hirzebruch justified
the definition of the elliptic genus of level N as the so-called χy-genus of LM [22, Section
7.4] (see also Section 2.7).

One of the surprising features of this genus is that it is rigid in the following sense. If we
assume the first Chern class ofM to be divisible byN , then the Fourier expansion of ϕN (M)
at a certain cusp has coefficients given by the topological Atiyah–Singer index of certain
bundles associated to M, namely tensor products of exterior and symmetric powers of TM

and T ∗M and of the line bundle L = (∧nT ∗M)
1
N [22, Appendix III, Section 4] (see also

equation (2.22) and Section 2.9). If (M, J) is acted on by a circle that preserves the almost
complex structure, then each of the above bundles inherits a circle action and one could
consider the equivariant elliptic genus of level N , where the indices above are replaced by
the equivariant indices of the bundles, which are therefore Laurent polynomials, namely
elements of Z[t, t−1]. The celebrated rigidity theorem for elliptic genera [22, Theorem on
page 181] asserts that if the first Chern class is divisible by N , then the equivariant elliptic
genus of level N is rigid, namely the equivariant indices of the bundles above are indeed
constant. Moreover, for certain types of actions, even more is true, as the elliptic genus
vanishes identically.

The proof of the rigidity theorem has a long history, dating back to results of Landweber
and Ochanine (for a detailed account see [25] and the references therein), as well as Taubes
[33] and Bott–Taubes [9]. Also, prior to elliptic genera, rigidity phenomena of some special
bundles had already been observed by, for instance, Atiyah–Hirzebruch [4] and Hattori
[19]. However for the bundles appearing in the expansion of the elliptic genus, the unified
framework offered by the latter is necessary for the proof of their rigidity.
Using these deep theorems we are able to deduce two types of results. On the geometric

side we observe relations between the index (or minimal Chern number) and the Betti
numbers of a compact symplectic manifold admitting a Hamiltonian action of a circle. In
particular, the toric case, as well as that of maximal index, are analyzed, as described in
Section 1.2. An important feature of our approach is that the use of elliptic genera frees
us from the usual positivity assumptions on the first Chern class (e.g. monotonicity or
Fano hypotheses).

On the number theoretical side we use rigidity to obtain relations among products of
Eisenstein series which are dictated by the weights of the action on an almost complex
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manifold; these relations are, to the best of our knowledge, new (see Section 1.3). Observe
that, on the one hand, finding algebraic relations among modular forms is a non-trivial
task. On the other hand, knowing which sets of integers can arise as the weights of a circle
action is the content of the yet unresolved Smith problem. Yet somehow the rigidity of
elliptic genera forms a bridge between these two mysterious phenomena.

1.2. From number theory to geometry. Let (M, J) be a compact almost complex
manifold of dimension 2n with first Chern class given by c1. We recall that the index of
(M, J) is the largest integer k0 such that, modulo torsion, c1 = k0 η for some non-zero
η ∈ H2(M;Z). For symplectic manifolds, namely manifolds that can be endowed with a
closed, non-degenerate two form ω, the set of almost complex structures compatible with
ω is contractible, and hence one can define Chern classes of the tangent bundle. We can
then consider the first Chern class and the index of a compact symplectic manifold (M, ω).

In analogy with algebraic geometry, it is natural to ask if there is a relation between the
index and the Betti numbers of (M, ω). If we restrict to symplectic manifolds admitting
a Hamiltonian circle action with isolated fixed points, then there has already been some
progress in this direction. Indeed, in [30] the third author showed that for such manifolds
the index, which coincides with the minimal Chern number, is bounded above by n + 1.
In [12] the authors proved that under the monotonicity assumption, namely c1 = [ω], and
two additional technical hypotheses, there are several relations between the index and the
Betti numbers which mirror results obtained in algebraic geometry for Fano varieties; see
also [10] for recent developments.

In this paper we employ elliptic genera to derive relations between the index and the
Betti numbers of a compact symplectic manifold admitting a Hamiltonian circle action
with isolated fixed points. The use of elliptic genera of level N is motivated by a result
of Hirzebruch (see Theorem 2.11) which asserts that the value of the elliptic genus at
some special points recovers information about the χy-genus, which in turns depends on
the Betti numbers of M, and about the indices of some tensor powers of the line bundle

L = (∧nT ∗
M)

1
k0 (see [30]).

The first result that we obtain concerns compact symplectic manifolds admitting a
larger action, namely that of a compact torus whose dimension equals half the dimension
of the manifold; these spaces are also known as symplectic toric manifolds and the action
as a toric action.

Corollary 1.1. Let (M, ω) be a compact symplectic manifold of dimension 2n that can be
endowed with a toric action. Let k0 be the index of (M, ω), bj(M) the j-th Betti numbers
of M and b the vector (b0(M), b2(M), . . . , b2n−2(M), b2n(M)). Then

k0 −1∑

j=0

yj divides
n∑

j=0

b2j(M)yj. (1.1)

In particular we have k0 ≤ n+ 1 and the following holds:

(1) If k0 = n + 1, then (M, ω) is symplectomorphic to CPn with Fubini-Studi form suit-
ably rescaled, and the symplectomorphism intertwines the torus action on M with the
standard toric action on CPn.

(2) If k0 = n, then b = (1, 2, 2, . . . , 2, 2, 1).
(3) If k0 = n− 1, then we have for some non-negative integer m

b = (1, 1 +m, 2 +m, 2 +m, . . . , 2 +m, 2 +m, 1 +m, 1).



4 K. BRINGMANN, A. CAVIEDES CASTRO, S. SABATINI, M. SCHWAGENSCHEIDT

(4) If k0 = n− 2, then we have for some non-negative integer m

b = (1, 1 +m, 1 + 2m, 2 + 2m, 2 + 2m, . . . , 2 + 2m, 1 + 2m, 1 +m, 1).

Hence CPn is the only symplectic toric manifold of index n + 1, regardless of the
monotone assumption. As for k0 = n, it is known that if the symplectic toric manifold
(M, ω) is monotone, then n = 2 and M is CP 1 ×CP 1 (see [12, Corollary 5.12]).

In Corollary 3.5 we derive a straightforward translation of Corollary 1.1 for a smooth
reflexive polytope ∆, where the vector of even Betti numbers is replaced by the h-vector
of ∆, and the index by the great common divisor of the affine lengths of its edges.

Next, we specialize to the case in which the index is maximal. First of all observe
that CPn, endowed with the Fubini-Studi symplectic form, is an example of a compact
symplectic manifold with a Hamiltonian action of a circle and isolated fixed points: this can
be obtained from the standard toric action by restricting to a generic subcircle. Moreover
its index is exactly n + 1 and its elliptic genus of level n + 1 vanishes (see [22] and also
Proposition 3.1 for an alternative proof). In the following we prove that – up to homotopy
equivalence and complex cobordism – the converse is also true.

Theorem 1.2. Let (M, ω) be a compact, connected symplectic manifold of dimension 2n
which can be endowed with a Hamiltonian action of a circle with isolated fixed points.
Assume that the index is maximal, i.e., k0 = n+1. Then M is complex cobordant to CPn

if and only if its elliptic genus of level n + 1 vanishes. Moreover, if the elliptic genus of
level n+ 1 vanishes, then M is homotopy equivalent to CPn.

We would like to remark that, even if the hypothesis of the vanishing of the elliptic
genus of level n + 1 seems strong, it is automatically satisfied if the type of the circle
action is not zero modulo n+1 (see Definition 2.4 and Theorem 2.17); for instance this is
the case for all symplectic toric manifolds (Proposition 3.1).

1.3. From geometry to number theory. We now discuss an application of the elliptic
genus to number theory. Namely, we show, using the rigidity of the elliptic genus, that
manifolds with circle actions yield many non-trivial relations between modular forms.

Let k and N be positive integers with N ≥ 2. We consider the Eisenstein series Gk,N (τ)
defined for τ ∈ H := {τ ∈ C : Im(τ) > 0} by the Fourier expansion

Gk,N (τ) := −
∞∑

n=1



∑

d|n

(n
d

)k−1 ζ−d
N + (−1)kζdN

(k − 1)!


 e2πinτ +





1 + ζN
2(1− ζN )

if k = 1,

Bk

k!
if k > 1,

(1.2)

where ζN := e
2πi
N is a primitive N -th root of unity and Bk denotes the k-th Bernoulli

number. The Eisenstein series Gk,N is a modular form of weight k for the subgroup

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}

of SL2(Z). This means that Gk,N is holomorphic on H and at the cusps and satisfies the
transformation law

Gk,N

(
aτ + b

cτ + d

)
= (cτ + d)kGk,N (τ)

for all
(
a b
c d

)
∈ Γ1(N) and τ ∈ H (compare Section 2.3). It is a fundamental fact that the

vector space of all modular forms of fixed weight k for Γ1(N) is finite-dimensional. This
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can be exploited to obtain relations between modular forms, for example. The following
theorem roughly states that manifolds with circle actions yield relations for products of
Eisenstein series.

Theorem 1.3. Let (M, J) be a compact, connected, almost complex manifold of dimension
2n which is acted on effectively by a circle with a non-empty set of isolated fixed points.

For a fixed point P ∈ M
S1

we let w1(P ), . . . , wn(P ) ∈ Z \ {0} denote the weights of the
circle action at P . Let k0 be the index of (M, J) and suppose that N divides k0. Then,
for k > n we have the following relations of products of Eisenstein series

∑

I∈Pn(k)



∑

P∈MS1

mI (w1(P ), . . . , wn(P ))

w1(P ) · · ·wn(P )


GI,N (τ) = 0, (1.3)

where Pn(k) is the set of all partitions of k with at most n parts, mI(x1, . . . , xn) de-
notes the monomial symmetric polynomial1, and GI,N (τ) = Gj1,N (τ) · · ·Gjn,N (τ) for
I = [j1, . . . , jn].

The crucial idea of the proof of Theorem 1.3 is as follows: Since M is endowed with a
circle action, we can consider the equivariant elliptic genus ϕN (M, t) of level N associated
to M, which depends on an additional parameter t ∈ S1. The rigidity theorem (see
Theorem 2.17 below) states that if N divides the index k0, then ϕN (M, t) is actually
independent of t. In particular, if we consider the Laurent expansion of ϕN (M, t) around
t = 1, then all coefficients apart from the constant term vanish identically. On the other
hand, the Laurent coefficients are essentially given by the linear combinations of products
of Eisenstein series from Theorem 1.3. We refer the reader to Section 4 for the details of
the proof.

Remark 1.4 If it is known that the elliptic genus ϕN (M, t) vanishes identically (see
Theorem 2.17 and Proposition 3.1 for cases in which this automatically happens), then in
the above theorem k can be taken to be at least n. For k < n equation (1.3) does not give
meaningful relations, as a short argument involving the localization formula in equivariant
cohomology shows that the coefficient of GI,N (τ) is zero for every partition I ∈ Pn(k).

We finish this section with an example illustrating the kinds of relations obtained from
Theorem 1.3.

Example 1.5 Let M = CP 2 and N = 3. Then M is endowed with an S1-action having
three fixed points P,Q,R with weights

w1(P ) = x, w2(P ) = y, w1(Q) = −x, w2(Q) = y−x, w1(R) = −y, w2(R) = x−y.

Here x, y ∈ Z can be chosen arbitrarily as long as no weight equals zero. We obtain from
Theorem 1.3 the relations

∑

I∈P2(k)

(
mI(x, y)

xy
+
mI(−x, y − x)

(−x)(y − x)
+
mI(−y, x− y)

(−y)(x− y)

)
GI,3(τ) = 0

1We recall that given indeterminates x1, . . . , xn and a sequence of non-negative integers I = (r1, . . . , rn),
the monomial symmetric polynomial mI(x1, . . . , xn) is defined as the sum of all monomials xJ , where
J = (j1, . . . , jn) ranges over all distinct permutations of I , and xI := x

r1
1 · · ·xrn

n .
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for all k > 2. The expression in the big brackets can be evaluated using a computer algebra
system. Explicitly, we get the following relations:

4G1,3G3,3 +G2
2,3 + 5G4,3 = 0,

−G2,3G3,3 +G5,3 = 0,

4G1,3G5,3 + 2G2,3G4,3 +G2
3,3 + 7G6,3 = 0,

−G2,3G5,3 −G3,3G4,3 + 2G7,3 = 0.

We have checked these identities using the Fourier expansions of the Eisenstein series Gk,3.
We also refer the reader to Proposition 4.4 for more general relations between products of
Eisenstein series coming from the rigidity of the elliptic genus of CPn.

1.4. Outline of the paper. As this paper is aimed to be for a general audience, in
Section 2 we write an extensive introduction to the subject and recall all of the necessary
concepts. In particular, in Subsection 2.1 some generalities about S1-actions on almost
complex and symplectic manifolds are recalled; in Subsection 2.2 some facts about the
equivariant cohomology and K-theory ring are given, especially the so-called localization
formulas in both settings. Subsection 2.3 contains a short introduction to modular forms
and the definition of Eisenstein series. In Subsection 2.4 we recall what genera associated to
a power series are, and finally in Subsection 2.5 we define what the elliptic genus of level N
is. In Subsection 2.6 we recall how the elliptic genus recovers important information about

the χy-genus and the indices of some tensor powers of the line bundle (∧nT ∗
M)

1
N . The

interpretation of the elliptic genus as the topological index of an infinite tensor product is
in Subsection 2.7. We define the type of the action, as well as what it means for an action
to be N -balanced, in Subsection 2.8. We also give an alternative proof of Proposition
2.14, already known in the literature, which identifies for which integers N an action is
N -balanced. Section 2.9 is devoted to describing what rigidity of the elliptic genus means,
and the rigidity theorem is recalled here.

In Section 3 we use the rigidity of the elliptic genus to derive topological results about
compact symplectic manifolds endowed with a Hamiltonian circle action with isolated
fixed points. In particular, in Subsection 3.1 we first specialize to toric actions and prove
Proposition 3.1 which asserts that, for every positive integer N dividing the index of
the manifold, the elliptic genus of level N vanishes identically. Proposition 3.2 gives a
divisibility criterion for the χy-genus which, together with Proposition 3.1, are the key
ingredients for the proof of Corollary 1.1, which is given on page 25. In subsubsection
3.1.1 we recall some generalities about reflexive polytopes and translate Corollary 1.1 in
this setting: this is the content of Corollary 3.5. In Subsection 3.2 we specialize to the
case in which the index is maximal. Before doing so we introduce some polynomials,
see equation (3.3), which generalize the so-called Hilbert polynomial and play a key role
in the proof of Theorem 1.2. We prove some of their symmetries (Proposition 3.7) and
compute them, as an example, for the complex projective space (see Proposition 3.8).
In Proposition 3.10 we show what the relation between these new polynomials and the
number of fixed points is. Theorem 3.12 is the key ingredient for the proof of Theorem
1.2 and implies that, for a compact symplectic manifold of dimension 2n acted on by a
circle in a Hamiltonian way and with isolated fixed points, having index k0 = n + 1 and
vanishing elliptic genus of level n + 1 implies the number of fixed points, and hence the
Euler characteristic, to be n+1. To conclude the proof of Theorem 1.2, which is given on
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page 35, we then need Theorem 3.14, whose proof combines results of Hattori [20], Tolman
[34] and Charton [10].

In Section 4 we give a proof of Theorem 1.3. Then in Subsection 4.1, after recalling some
standard facts, we give a formula for computing the coefficients appearing in Theorem
1.3 whenever M is a coadjoint orbit (Proposition 4.2). Finally, in Subsection 4.2, we
compute the relations among Eisenstein series given by Theorem 1.3 whenM is the complex
projective space.

2. Background

2.1. The S1-actions on almost complex and symplectic manifolds. In this subsec-
tion we recall some standard facts about circle actions on almost complex and symplectic
manifolds.

Let (M, J, S1) be an almost complex manifold of dimension 2n endowed with a circle
action that preserves J. This means that the endomorphism J : TM → TM is equivariant
with respect to the action of S1 induced on the tangent bundle TM. Henceforth we assume
that the S1-action on (M, J, S1) has fixed points, and denote the set of fixed points by

M
S1
. Similarly, for every subgroup Zk of S1, we denote the set of points whose stabilizer is

Zk by M
Zk . We recall that, given a fixed point P ∈ M

S1
, there exist complex coordinates

z1, . . . , zn on TM|P ≃ Cn and integers w1(P ), . . . , wn(P ) such that the S1-action on TM|P
is given by

S1 ∋ λ · (z1, . . . , zn) =
(
λw1(P )z1, . . . , λ

wn(P )zn

)
.

Such integers are called the weights of the S1-action at the fixed point P . Note that

P ∈ M
S1

is an isolated fixed point if and only if none of its weights is zero; this is a
consequence of the fact that, after choosing an S1-invariant metric onM, in a neighborhood
U ⊂ M of P the exponential map with respect to this metric intertwines the S1-action on
TM|P with that on U .

If M carries additional structure, then we require that such structure is preserved by
the circle action. For instance, let (M, ω) be a symplectic manifold, which in this article
is always assumed to be compact and connected. If S1 acts on it, then we require the
S1-family of diffeomorphisms to be indeed symplectomorphisms. This translates into the
following formula: let ξ be a vector in Lie(S1) and ξ# the corresponding vector field on
M. Then the flow of diffeomorphisms associated to ξ# is a flow of symplectomorphisms if
and only if

d
(
ιξ#ω

)
= 0 .

In the case in which the closed form above is exact, namely if there exists ψ : M → R

such that ιξ#ω = dψ, then the S1-action is called Hamiltonian and the function ψ the
moment map of the action. If there is a whole compact torus T acting on (M, ω) via
symplectomorphisms, then the notion of Hamiltonian action generalizes to this case in the
following way.

Definition 2.1. Let (M, ω) be a symplectic manifold and let T be a compact torus acting
on it via symplectomorphisms with Lie algebra t. Then the T-action is called Hamiltonian
if there exists a map ψ : M → t∗ such that the following conditions hold:
• ψ is T invariant;
• for every ξ ∈ t the following identity holds:

ιξ#ω = dψξ , (2.1)
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where ξ# is the vector field corresponding to the Lie algebra element ξ and the function
ψξ is given by ψξ(P ) := 〈ψ(P ), ξ〉 (here 〈·, ·〉 denotes the evaluation between t∗ and t).

Equation (2.1) implies that, if M is compact, then a Hamiltonian action always has
fixed points. A lower bound can be found as follows. Suppose first that the torus is one-
dimensional. If the fixed points are isolated, then the moment map is a Morse function
with only even indices, and a Morse theory argument implies that

b2j(M) = Nj , for all j ∈ {0, . . . , n},

where b2j(M) is the 2j-th Betti number of M and Nj is the number of fixed points with
j negative weights. Since for a compact symplectic manifold M of dimension 2n the non-
degeneracy of the symplectic form implies b2j(M) 6= 0 for all j ∈ {0, . . . , n}, we conclude

that for a Hamiltonian circle action |MS1
| ≥ n+1. The same conclusion holds for actions

of tori of higher dimensions: it suffices to restrict the action to a circle subgroup.
Since the vector space tangent to the torus orbits of a Hamiltonian action is isotropic,

the largest dimension of a compact torus that acts on a 2n-dimensional symplectic manifold
is exactly n.

Definition 2.2. A symplectic toric manifold is a compact symplectic manifold of dimen-
sion 2n endowed with the effective, Hamiltonian action of a compact torus T of dimension
n. We denote this space with the triple (M, ω, ψ), where ψ : M → t∗ and t = Lie(T).

By the celebrated Convexity Theorem of Atiyah [1] and Guillemin-Sternberg [17], the
image of the moment map is a convex polytope. However, for symplectic toric manifolds
this polytope has very special features, and is called a smooth (or Delzant) polytope. These
are defined combinatorially as follows.

Definition 2.3. Let ∆ ⊂ Rn be an n-dimensional polytope. Then ∆ is called smooth (or
Delzant) if the following three properties are satisfied:

(D1) ∆ is simple: there are exactly n edges meeting at each vertex;
(D2) every vertex is rational : the lines supporting the n edges meeting at a vertex v

are given by v + t · wj , with t ∈ R and wj ∈ Zn for every j ∈ {1, . . . , n}, for every
vertex v;

(D3) every vertex is smooth: for each vertex v the vectors w1, . . . , wn above can be
chosen to be a Z-basis of Zn.

Given the Convexity Theorem, it is not hard to see that the image of the moment
map of a 2n-dimensional symplectic toric manifold is a smooth n-dimensional polytope.
However a celebrated theorem of Delzant [11] asserts that the polytope characterizes com-
pletely the symplectic toric manifold up to equivariant symplectomorphisms. Moreover for
any smooth polytope ∆ one can find a unique (modulo equivariant symplectomorphism)
symplectic toric manifold whose image of the moment map is exactly ∆.

2.2. Equivariant cohomology, characteristic classes, and K-theory. For a more
detailed exposition and for proofs of the following facts see for instance [3, 8, 18] for
equivariant cohomology and characteristic classes and [2, 5, 6, 7] for equivariant K-theory.
We recall that, given a manifold M acted on continuously by a circle S1, according to the
Borel model the equivariant cohomology ring H∗

S1(M;R) of M with coefficients in the ring

R is defined to be the ordinary cohomology ring of the orbit space M ×S1 ES1, where
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ES1 is a contractible space on which S1 acts freely, and the S1-action on M×ES1 is the
diagonal one. The space ES1 can, for instance, be chosen to be the unit sphere S∞ in
C∞; however ES1 is unique up to homotopy equivalence. For instance we have that

H∗
S1(pt;R) = H∗

(
S∞/S1;R

)
= H∗ (CP∞;R) = R[x], (2.2)

where R is the coefficient ring and x has degree two. Similarly, if we have a compact torus
T of dimension m, then H∗

T(M;R) is defined to be H∗(M×TET), where ET can be chosen
to be (S∞)m. Hence H∗

T(pt;R) = R[x1, . . . , xm], where each xj has degree two. If the ring
R is a field, then H∗

T(pt;R) is identified with the symmetric algebra on t∗, where t is the
Lie algebra of T, and is denoted by S(t∗).

Any S1-equivariant map between two spaces induces a pull-back map in equivariant

cohomology. For instance, let M
S1

denote the fixed point set, which we are assum-

ing to be non-empty. Then the (S1-equivariant) inclusion ι : MS1
→֒ M induces a map

ι∗ : H∗
S1(M;R) → H∗

S1(M
S1
;R) which is well-understood in many cases; for example, if M

can be endowed with a Hamiltonian torus action, then Kirwan [24] proved that ι∗ is injec-

tive. Note that H∗
S1(M

S1
;R) is an easier object to handle, and if in particular the set of

fixed points consists of finitely many elements, then H∗
S1(M

S1
;R) = ⊕

P∈MS1R[x]. Hence-
forth the restriction of an equivariant cohomology class α to a fixed point P is denoted by
α(P ).

The equivariant cohomology ring often recovers properties of the non-equivariant one.
Indeed, one can consider the inclusion map {e} →֒ S1, where e denotes the identity
element in S1, observe that H∗

{e}(M;R) is just the ordinary cohomology ring, and study

the corresponding pull-back

r : H∗
S1(M;R) → H∗(M;R).

Often this map is well-understood too; for instance, in the Hamiltonian case, it is surjective
[24]. Observe that if M is a point, then r is given by evaluation at x = 0.

Just as for the ordinary cohomology ring, there is a push-forward map in equivariant
cohomology, also called an “integration map”

∫

M

: H∗
S1(M;R) → H

∗−dim(M)
S1 (pt;R) (2.3)

which comes from integration along the fibers of the projection onto the second factor
M ×S1 ES1 → CP∞. Observe that the integral of an equivariant cohomology class of
degree higher than the dimension of M is not necessarily zero. In order to compute (2.3)
there is a very useful formula due to Atiyah-Bott [3] and Berline Vergne [8], which is
referred to as the localization formula (in equivariant cohomology), and is as follows. For
the sake of brevity we only describe it if M is almost complex and the fixed points are
isolated; however it holds more generally for oriented manifolds and any type of fixed point
set.

Lemma 2.1. Let (M, J, S1) be a compact almost complex manifold of dimension 2n acted

on by a circle with discrete fixed point set MS1
. Let α be an equivariant cohomology class.

Then we have ∫

M

α =
∑

P∈MS1

1

xn
α(P )

w1(P ) · · ·wn(P )
, (2.4)

where x is as in (2.2).
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Consider now a complex vector bundle V → M which is endowed with a compatible S1-
action, namely an action that makes the projection map equivariant. Then its equivariant
Chern classes are defined as the ordinary Chern classes, of the associated bundle V ×S1

ES1 → M ×S1 ES1. If V is the tangent bundle TM, then, using functoriality of Chern
classes it is not hard to prove that, given a fixed point P with weights w1(P ), . . . , wn(P ),

the restriction of the j-th equivariant Chern class cS
1

j of the tangent bundle TM to P is
given by

cS
1

j (P ) = ej(w1(P ), . . . , wn(P ))x
j , (2.5)

where ej(x1, . . . , xn) denotes the j-th elementary symmetric polynomial in x1, . . . , xn.
Since the restrictions of equivariant Chern classes to ordinary cohomology are the or-

dinary Chern classes, formula (2.4) can be very useful to compute Chern numbers of
M too. Let c1, . . . , cn denote the Chern classes of the tangent bundle of (M, J), where
cj ∈ H2j(M;Z), and P (n) the set of partitions λ = [λ1, . . . , λk] of n, i.e., λ1 ≥ · · · ≥ λk > 0
with λ1 + . . .+ λk = n. For each λ ∈ P (n) the Chern number of (M, J) associated to λ is
given by

Cλ(M) =

∫

M

cλ1 · · · cλk
∈ Z. (2.6)

Using formula (2.4) it is easy to show that

Cλ(M) =
∑

P∈MS1

eλ1(w1(P ), . . . , wn(P )) · · · eλk
(w1(P ), . . . , wn(P ))

w1(P ) · · ·wn(P )
. (2.7)

The K-theory (resp. equivariant K-theory) ring S1, is given a manifold M acted on by
a circle, the abelian group associated to the semigroup of isomorphism classes of complex
vector bundles (resp. complex vector bundles endowed with a compatible S1-action),
endowed with the operations of direct sum and tensor product. It is denoted by K(M)
(resp. KS1(M)); for instance K(pt) ≃ Z and KS1(pt) ≃ Z[t, t−1]. The inclusion {e} →֒
S1 induces a map KS1(M) → K(M) which, in the case in which M is a point, is the
evaluation at t = 1. The topological index (resp. equivariant index) of a bundle V –
regarded as an element of K(M)– is a push forward map Ind: K(M) → K(pt) ≃ Z (resp.
IndS1 : KS1(M) → KS1(pt) ≃ Z[t, t−1]), as defined in [6]. Its computation can be carried
out using the Atiyah-Singer formula [7]

Ind(V ) =

∫

M

Ch(V )Todd(M),

where Ch: K(V ) → H∗(M) denotes the Chern character homomorphism and Todd(M) the
total Todd class of M. As for the equivariant index there is, in analogy with equivariant
cohomology, a localization formula that allows to compute it, as proved by Atiyah and
Segal in [5]. As above, for simplicity we assume here that M is almost complex and the
fixed point set is discrete.

Lemma 2.2. Let (M, J, S1) be a compact almost complex manifold of dimension 2n acted
on by a circle with isolated fixed points. Given an equivariant bundle V ∈ KS1(M), its
equivariant index is given by

IndS1(V ) =
∑

P∈MS1

V (P )∏n
j=1

(
1− t−wj(P )

) ∈ Z
[
t, t−1

]
. (2.8)
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Just for equivariant cohomology classes, given a bundle V over M endowed with an
S1-action compatible with the projection, to compute its non-equivariant index one can
use formula (2.8), namely

Ind(V ) = lim
t→1

∑

P∈MS1

V (P )∏n
j=1

(
1− t−wj(P )

) . (2.9)

2.3. Modular forms for Γ1(N). We recall some basic facts about modular forms for the
congruence subgroup Γ1(N), roughly following Appendix I of [22]. Note that the index of
Γ1(N) in SL2(Z) is finite. The group SL2(Z) acts on the upper half-plane H by fractional
linear transformations

Mτ := aτ+b
cτ+d

for M =
(
a b
c d

)
∈ SL2(Z), and this action extends to Q ∪ {∞} if we set M∞ := a

c with
±1
0 = ∞. The classes Γ1(N)\(Q ∪ {∞}) are called the cusps of Γ1(N). Since Γ1(N) has
finite index in SL2(Z), it also has finitely many cusps.

The geometric significance of the cusps is the fact that the quotient Γ1(N)\H is a non-
compact Riemann surface which can be compactified by adding the finitely many cusps
Γ1(N)\(Q ∪ {∞}).

A modular form of weight k ∈ Z for Γ1(N) is a holomorphic function f : H → C which
transforms as

f(Mτ) = (cτ + d)kf(τ)

for all M =
(
a b
c d

)
∈ Γ1(N) and which is holomorphic at the cusps, which means that for

every M ∈ SL2(Z) the function f |kM(τ) := (cτ + d)−kf(Mτ) has a Fourier expansion of
the form

f |kM(τ) =
∑

n∈Q+
0

cM (n)qn (2.10)

with coefficients cM (n) ∈ C and q := e2πiτ . If M∞ = a
c , then we call the constant term

cM (0) of f |kM the value of f at the cusp a
c and denote it by f(ac ). It is independent of

the particular choice of M with M∞ = a
c , and it can be computed as the limit

f
(
a
c

)
= lim

τ→i∞
f |kM(τ),

or, equivalently, by taking the limit of f |kM as q → 0 in the Fourier expansion (2.10).
We let Mk(Γ1(N)) be the complex vector space of all modular forms of weight k for

Γ1(N). It is well-known that Mk(Γ1(N)) = {0} for k ≤ 0, M0(Γ1(N)) = C, and that
Mk(Γ1(N)) is finite-dimensional for all k ∈ N. Furthermore, we let

M(Γ1(N)) :=

∞⊕

k=0

Mk(Γ1(N))

be the graded ring of all modular forms for Γ1(N).
There are many ways to construct interesting examples of modular forms for Γ1(N).

Here we consider the Eisenstein series

Gk,N(τ) := −
1

(2πi)k

∑

(m,n)∈Z2\{(0,0)}

ζmN
(mτ + n)k

∈Mk(Γ1(N)) (2.11)

for N ≥ 2 and k ≥ 1. Actually, the defining series only converge if k ≥ 3, but one can
also make sense of the series for k ∈ {1, 2} (using the so-called Hecke trick) to obtain
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Eisenstein series of weight one and two. The Fourier expansion of Gk,N at ∞ is given by
(1.2).

2.4. Genera associated to formal power series. We first recall that a stably almost
complex manifold (also known as unitary manifold) is a manifold M together with a com-
plex structure on the stable tangent bundle (namely a complex structure on TM⊕(M×Rk)
for some k ≥ 1, where M × Rk denotes the trivial real bundle of rank k). The complex
cobordism ring Ω is the ring of cobordism classes of stable complex manifolds. A classical
result of Milnor [28] and Novikov [29] (see also Stong [32]) that is used below asserts that
two almost complex manifolds are stably cobordant if and only if their Chern numbers are
the same.

A complex multiplicative genus (or just a genus) is a ring homomorphism ϕ : Ω⊗Q → R,
where R is a given ring; for example, R could be Z or Q, the polynomial ring Q[y], or the
ring M(Γ1(N)) of modular forms for Γ1(N).

One can construct genera from normalized formal power series, as we explain now. Let

Q(x) = 1 + a1x+ a2x
2 + a3x

3 + . . .

be a normalized formal power series with coefficients ak ∈ R. Let (M, J) be an almost
complex compact manifold of dimension 2n. The following procedure yields the genus
ϕQ(M) associated to Q:

Step 1 : We introduce variables x1, . . . , xn to which we assign weight one. Then, for
example, x1x

2
2 has weight three. Consider the product

Q(x1)Q(x2) · · ·Q(xn) = 1 +

∞∑

k=1

pk(x1, . . . , xn),

where the polynomial pk consists of all summands of weight k. The first three polynomials
pk are given by

p1 = a1 (x1 + · · ·+ xn) ,

p2 = a21 (x1x2 + x1x3 + · · ·+ xn−1xn) + a2
(
x21 + · · ·+ x2n

)
,

p3 = a31 (x1x2x3 + x1x2x4 + . . . ) + a1a2
(
x1x

2
2 + x2x

2
1 + . . .

)
+ a3

(
x31 + · · ·+ x3n

)
.

Note that pk is homogeneous of degree k.

Step 2 : Each polynomial pk is symmetric, so it can be written as a polynomial in the
elementary symmetric polynomials2 σℓ with ℓ ≤ k, i.e., there is a polynomial Qk in k
variables such that

pk(x1, . . . , xn) = Qk(σ1(x1, . . . , xn), . . . , σk(x1, . . . , xn)).

2Recall that the elementary symmetric polynomials are defined by σℓ(x1, . . . , xn):=∑
1≤j1<···<jℓ≤n

xj1 · · ·xjℓ . For example, σ0(x1 . . . , xn) = 1, σ1(x1 . . . , xn) = x1 + · · · + xn, and

σn = x1 · · ·xn.
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Again, we list some explicit formulas for the first few qk:

Q1(y1) = a1y1,

Q2(y1, y2) = a2y
2
1 +

(
a21 − 2a2

)
y2,

Q3(y1, y2, y3) = a3y
3
1 + (a1a2 − 3a3)y1y2 +

(
a31 + 3a3 − 3a1a2

)
y3.

If we think of yℓ as having weight ℓ, then the polynomial Qℓ consists only of terms of
weight ℓ. This implies that if the coefficients ak lie in some graded ring R with ak ∈ Rk,
then the coefficients of Qk lie in Rk, as well.

Step 3 : Since the manifold M is almost complex, i.e., its tangent bundle has a complex
structure, its Chern classes c1(M), . . . , cn(M) (which are by definition the Chern classes of
the tangent bundle of M) are defined. We plug in cℓ(M) for σℓ in Qn and integrate over
M to obtain an element of R (even Rn if R is graded), which we call the genus ϕQ(M)
associated to Q, i.e.,

ϕQ(M) =

∫

M

Qn(c1(M), . . . , cn(M)).

The above procedure is tedious to do by hand, but can easily be done by a computer
algebra system.

Remark 2.3 It is sometimes convenient to allow non-normalized power series Q(x) =
a0 + a1x + a2x

2 + . . . with a0 6= 0. We can go through the same procedure as above
and still get a genus associated to Q. If Q is not normalized, then the normalized series
a−1
0 Q(a0x) yields the same genus as Q.

Remark 2.4 We can write ϕQ(M) as a linear combination of Chern numbers (see (2.6))

ϕQ(M) =
∑

λ∈P (n)

fλCλ(M)

for some fλ ∈ R (even in Rn if R is graded). Note that fλ is a polynomial in the ak’s,
which depends on λ (hence on n), but not on the manifold M. Again, the coefficients fλ
can easily be computed by a computer algebra system.

Example 2.5 Let n = 2. We write

Q(x1)Q(x2) = 1 + P1(x1, x2) + P2(x1, x2) + . . . ,

where

P1(x1, x2) := a1 (x1 + x2) , P2(x1, x2) := a2
(
x21 + x22

)
+ a21x1x2.

In terms of the elementary symmetric polynomials, we have

x21 + x22 = (x1 + x2)
2 − 2x1x2 = σ21 − 2σ2, x1x2 = σ2,

and hence

P2(x1, x2) = a2
(
σ21 − 2σ2

)
+ a21σ2 = a2σ

2
1 +

(
a21 − 2a2

)
σ2 = Q2(σ1, σ2).

Plugging in the Chern numbers and integrating over M, we obtain

ϕQ(M) = a2C[1,1](M) +
(
a21 − 2a2

)
C[2](M).
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Example 2.6 The Hirzebruch χy-genus is the Q[y]-valued genus associated to the power
series

x

1− e−x
(1 + ye−x).

If we plug in x
ex−1 =

∑∞
n=0Bn

xn

n! with the Bernoulli numbers Bn ∈ Q (B0 = 1, B1 =

−1
2 , B2 =

1
6), then we find the explicit expansion

x

1− e−x
(1 + ye−x) = a0(y) +

∞∑

k=1

ak(y)x
k,

where

a0(y) := (1 + y), ak(y) :=
k∑

n=0

Bn

n!(k − n)!
+ y

Bk

k!
.

In particular, every coefficient ak is a polynomial in y of degree ≤ 1 with rational coeffi-
cients. Note that the power series is not normalized. The associated genus χy(M) for a

manifold of dimension 2n is a linear combination of products of the form an−ℓ
0 ak1 · · · akℓ .

Hence χy(M) is a polynomial in y of degree n with rational coefficients. Indeed more is
true: the coefficient of yp is always an integer, for all p ∈ {0, . . . , n}, as it is the topological
index of the bundle ∧pT (see [22, page 61]).

Now let n = 2 and consider M = CP 2. Its Chern numbers are given by

C[1,1]

(
CP 2

)
= 9, C[2]

(
CP 2

)
= 3.

The relevant polynomials are

a0(y) = 1 + y, a1(y) = B0 +B1 + yB1 =
1

2
−
y

2
,

a2(y) =
1

2
B0 +B1 +

1

2
B2 + y

1

2
B2 =

1

12
+

y

12
.

A short calculation gives

χy

(
CP 2

)
= a0a2C[1,1]

(
CP 2

)
+
(
a21 − 2a0a2

)
C[2]

(
CP 2

)
= y2 − y + 1.

The χy-genus interpolates several other interesting genera of M. For example, χ−1(M)
is the Euler characteristic χ(M) of M, and χ1(M) is the signature sign(M) of M, which in
turn is the genus associated to the power series x

tanh(x) .

2.5. The elliptic genus of level N . Let N ≥ 2 be an integer. The elliptic genus ϕN of
level N is the genus associated to a certain power series with coefficients in R =M(Γ1(N)),
the ring of modular forms for Γ1(N). It is constructed in such a way that the elliptic genus
ϕN (M) of a manifold of dimension 2n is a modular form of weight n for Γ1(N).

We require the Jacobi theta function

ϑ(τ ; z) :=
∑

n∈Z

(−1)ne2πi(n+
1
2)zeπi(n+

1
2)

2
τ ,
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with τ ∈ H and z ∈ C. Using the Poisson summation formula one can show that it satisfies
the transformation formulas

ϑ

(
aτ + b

cτ + d
;

z

cτ + d

)
= ξ(cτ + d)

1
2 e

πicz2

cτ+d ϑ(τ ; z),

ϑ′
(
aτ + b

cτ + d
; 0

)
= ξ(cτ + d)

3
2ϑ′(τ ; 0),

(2.12)

for all
(
a b
c d

)
∈ SL2(Z), with some eigth root of unity ξ which depends on a, b, c, d but not

on τ and z. Here we are abbreviating ϑ′(τ ; z) := d
dzϑ(τ ; z). Furthermore, the Jacobi theta

function satisfies the elliptic shifts

ϑ (τ ; z + 1) = −ϑ(τ ; z), ϑ (τ ; z + τ) = −eπi(2z+τ)ϑ(τ ; z). (2.13)

It can also be written as an infinite product using the Jacobi triple product identity

ϑ(τ ; z) = 2i sin(πz)q
1
8

∞∏

n=1

(1− qn)
(
1− e2πizqn

) (
1− e−2πizqn

)
. (2.14)

Note that ϑ′(τ ; 0) = 2πiη3(τ) with the Dedekind η-function

η(τ) := q
1
24

∞∏

n=1

(1− qn). (2.15)

We now define the elliptic genus ϕN of level N as the genus associated to the normalized
power series

QN (x) :=
x

2πi
ϑ′(τ ; 0)

ϑ
(
τ ; x

2πi −
1
N

)

ϑ
(
τ ; x

2πi

)
ϑ
(
τ ;− 1

N

) = 1 + a1(τ)x+ a2(τ)x
2 + . . . . (2.16)

Note that the elliptic genus ϕN is only defined for N ≥ 2. Indeed, since ϑ(τ ; z) = 0 for
z ∈ Zτ + Z the above definition would not make sense for N = 1. Keep in mind that
QN (x) and ϕN depend on τ ∈ H.

There are several other useful representations of the power series QN (x). For instance,
using the product expansions of η(τ) and ϑ(τ ; z) stated in (2.15) and (2.14) above, we can

write QN (x) as an infinite product (with ζN = e2πi/N ),

QN (x) = x
(1− e−xζN )

(1− e−x) (1− ζN )

∞∏

n=1

(1− e−xζNq
n)
(
1− exζ−1

N qn
)
(1− qn)2

(1− e−xqn) (1− exqn) (1− ζNqn)
(
1− ζ−1

N qn
) ,

which is often used as the definition of QN (x) in the literature, see for example Appen-
dix III of [22]. Many more interesting properties and different representations of QN (x)
can be found in Appendix I of [22] and in the theorem in Section 3 of [37], where the
power series QN (x) was studied in connection with periods of modular forms.

We have the following first basic result about the power series QN (x):

Lemma 2.7. The coefficients ak(τ) are modular forms of weight k for Γ1(N).

The lemma is well-known, and can be proved using the transformation behaviour of ϑ
and its derivative stated in (2.12) above. We give a different proof, by showing that the
ak(τ) are Eisenstein series. This explicit representation seems to be less known.

Lemma 2.8. We have ak(τ) = Gk,N (τ), the Eisenstein series defined in equation (2.11).
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Proof. By item (vii) of the theorem in Section 3 of [37], we have that

QN (x) = xFτ

(
x

2πi
,−

1

N

)
,

with the function

Fτ (z1, z2) :=

∞∑

n=0

ξ−n
2

ξ1q−n − 1
−

∞∑

m=0

ξm1 ξ2
q−m − ξ2

(ξj := e2πizj ).

On the other hand, by item (iv) of the same theorem from [37], we have the Taylor
expansion

xFτ

(
x

2πi
,−

1

N

)
= 1−N

x

2πi
+
∑

r,s≥0

|r − s|!

(
1

2πi

d

dτ

)min(r,s)

G|r−s|+1,1(τ)

(
−2πi

N

)s

s!

xr+1

r!
,

where Gk,1(τ) is defined by the Fourier expansion (1.2) if k > 0 is even, and Gk,1(τ) = 0
if k is odd. Note that we use a different normalization of Gk,1(τ) than [37]. We plug in
the Fourier expansion (1.2) of Gk,1(τ) and compute its derivative coefficient-wise. We first
consider the constant term of ak(τ). For k = 1 it is given by

−
N

2πi
+
∑

s≥0
s odd

Bs+1

(s+ 1)!

(
−
2πi

N

)s

=

(
−
N

2πi

)∑

s≥0

Bs

s!

(
−
2πi

N

)s

+
1

2

=

(
−
N

2πi

) (
−2πi

N

)

e−
2πi
N − 1

+
1

2
=

1 + ζN
2 (1− ζN )

,

where we use that B0 = 1, B1 = −1
2 , and Bs = 0 for odd s > 1 in the first step, and the

definition x
ex−1 =

∑
s≥0Bs

xs

s! of the Bernoulli numbers in the second step. For k > 1 the

constant term of ak(τ) is given by the constant term of Gk,1(τ), which is Bk

k! . In any case,
the constant coefficient of ak(τ) equals the constant term of the Eisenstein series Gk,N (τ).

Now we compute the n-th Fourier coefficient (n > 0) of ak(τ). Noting that
(

1
2πi

∂
∂τ

)ℓ
qn =

nℓqn for ℓ ≥ 0 and n > 0, the n-th coefficient of ak(τ) is given by

−
∑

s≥0

nmin(k−1,s)
∑

d|n

d|k−1−s|
(
1 + (−1)|k−1−s|+1

) (−2πi
N

)s

s!

1

(k − 1)!

= −
1

(k − 1)!

∑

d|n

(n
d

)k−1



∑

s≥0

(
1 + (−1)k−s

) (−2πid
N

)s

s!




= −
1

(k − 1)!

∑

d|n

(n
d

)k−1 (
ζ−d
N + (−1)kζdN

)
,

where we use the definition ex =
∑

s≥0
xs

s! in the last step. We obtain that the n-th

coefficient of ak(τ) equals the n-th coefficient of Gk,N(τ), which finishes the proof. �

Recall that the genus associated to a power series Q can be written as

ϕQ(M) =
∑

λ∈P (n)

fλCλ(M)
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with fλ ∈ Rn and the Chern numbers Cλ(M) ∈ Z. In particular, for the elliptic genus,
every fλ is a modular form of weight n for Γ1(N) and a polynomial in the Eisenstein series
Gk,N . Thus we obtain the following important result.

Proposition 2.9. The elliptic genus ϕN (M) of an almost complex compact manifold of
dimension 2n is a modular form of weight n for Γ1(N).

Example 2.10 To emphasize the explicit nature of the construction of the elliptic genus,
we computed the relevant modular forms fλ (up to q5) for n = 2 and N ∈ {2, 3}:

N λ fλ(τ)

2 [2] −1
6 − 4q − 4q2 − 16q3 − 4q4 − 24q5 + . . .

[1, 1] 1
12 + 2q + 2q2 + q3 + 2q4 + 12q5 + . . .

3 [2] 1
4 − 3q − 9q2 − 3q3 − 21q4 − 18q5 + . . .

[1, 1] 1
12 + q + 3q2 + q3 + 7q4 + 6q5 + . . .

For example, the elliptic genus of level N = 2 of an almost complex compact manifold M

of dimension four with Chern numbers C[2](M), C[1,1](M) ∈ Z is given by

ϕN (M) = f[2]C[2](M) + f[1,1]C[1,1](M)

with

f[2](τ) = −
1

6
−4q−4q2−16q3−4q4−24q5+. . . , f[1,1](τ) =

1

12
+2q+2q2+q3+2q4+12q5+. . . ,

which are modular forms of weight two for Γ1(2).

2.6. The values of the elliptic genus at the cusps. In this subsection we discuss an
important result which roughly states that the values at the cusps of the elliptic genus
ϕN (M) of level N of an almost complex manifold M are given by certain other interesting
genera of M.

Let w be a primitive N -division point of C/(Zτ + Z), that is, Nw ∈ Zτ + Z and N is
the minimal positive integer with this property. We can write it in the form w = k

N τ +
ℓ
N

with k, ℓ ∈ Z. Since w is primitive, we may assume that gcd(k, ℓ) = 1. To every such
N -division point w = k

N τ + ℓ
N we associate the cusp a

k of Γ1(N), where a ∈ Z is chosen
(existence follows by Bezout) such that aℓ− bk = 1 for some b ∈ Z. One can check that
the Γ1(N)-class of the cusp a

k is uniquely determined by this condition, independently of
the particular choices of a, b, k, ℓ that we make above. However, we remark that a cusp
can be represented by several different N -division points w. For example, the cusp ∞ = 1

0

is represented by the N -division point 1
N , but also by − 1

N .

For a primitive N -division point w = k
N τ +

ℓ
N we consider the normalized power series

QN,(k,ℓ)(x) := e−
kx
N

x

2πi
ϑ′(τ ; 0)

ϑ
(
τ ; x

2πi − w
)

ϑ
(
τ ; x

2πi

)
ϑ (τ ;−w)

(2.17)

= x
e−

kx
N

(
1− e−xζℓNq

k
N

)

(1− e−x)
(
1− ζℓNq

k
N

)
∞∏

n=1

(
1− e−xζℓNq

n+ k
N

)(
1− exζ−ℓ

N qn−
k
N

)
(1− qn)2

(1− e−xqn) (1− exqn)
(
1− ζℓNq

n+ k
N

)(
1− ζ−ℓ

N qn−
k
N

) ,

where we are using the product expansions (2.14) and (2.15). We let ϕN,(k,ℓ) be the
associated genus. Using the transformation rules (2.13) we see that QN,(k,ℓ)(x) and ϕN,(k,ℓ)
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only depend on k and ℓ (mod N), that is, they only depend on the N -division point w.
Note that for w = 1

N we recover the elliptic genus of level N , e.g.,

QN (x) = QN,(0,1)(x), ϕN = ϕN,(0,1).

It follows from Theorem 6.4 in Appendix I of [22] that for every matrix A =
(
a b
k ℓ

)
∈ SL2(Z)

we have the relation

ϕN (M)|nA = ϕN,(0,1)A(M) = ϕN,(k,ℓ)(M) (2.18)

with the weight n slash operator defined in Section 2.3. Equivalently, this means that
the expansion of the elliptic genus ϕN (M) at the cusp a

k (represented by some primitive

N -division point w = k
N τ + ℓ

N ) is given by the genus ϕN,(k,ℓ)(M). This fact can be used
to prove the following result about the values of the elliptic genus at the cusps.

Theorem 2.11 ([22], Theorem on page 100). Let (M, J) be a compact almost complex
manifold with first Chern class c1 ∈ H2(M;Z) and index k0. Let N be a positive integer
dividing k0. If one represents a cusp a

k of Γ1(N) by a primitive N -division point k
N τ +

ℓ
N ,

with 0 ≤ k < N and 0 ≤ ℓ < N , then the value of ϕN (M) in this cusp equals

Ind
(
Lk
)
, if k > 0,

where L is the line bundle with N · c1(L) = −c1, and

χy(M)

(1 + y)n
, if k = 0 and y = −e

2πiℓ
N , with gcd(ℓ,N) = 1.

2.7. The elliptic genus as the index of a virtual vector bundle. We first set nota-
tion and recall some facts about the Chern characters of wedge and symmetric products
of vector bundles (see [22, Subsection 1.5]). Let E be a complex vector bundle of rank
n over a differentiable manifold M. Then E formally splits as a sum of line bundles
E = L1 ⊕ . . . ⊕ Ln with xj = c1(Lj). Let E∗ be the dual bundle, ∧kE (resp. SkE) the
k-th exterior (resp. symmetric) power of E. If we write

∧tE :=

∞∑

j=0

(
∧jE

)
tj and ∧t E

∗ :=

∞∑

j=0

(
∧jE∗

)
tj ,

then

ch(∧tE) =
n∏

j=1

(1 + texj ) , ch(∧tE
∗) =

n∏

j=1

(
1 + te−xj

)
and (2.19)

ch(∧t(E ⊗ C)) =

n∏

j=1

(
(1 + texj)(1 + te−xj)

)
.

Analogously, if we set

StE :=

∞∑

j=0

(
SjE

)
tj and StE

∗ :=

∞∑

j=0

(
SjE∗

)
tj ,
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then

ch(StE) =

n∏

j=1

1

1− texj
, ch(StE

∗) =

n∏

j=1

1

1− te−xj
and (2.20)

ch(St(E ⊗ C)) =

n∏

j=1

1

(1− texj )(1− te−xj)
.

Let (M2n, J) be an almost complex manifold, with formal decomposition of its tangent
bundle T := TM = E1⊕ . . .⊕En as sum of line bundles and formal variables xj := c1(Ej).
Let N be a positive integer that divides the index k0 of (M, J) and let k, ℓ be two integers
such that k

N τ + ℓ
N is a primitive N -division point of C/(Zτ + Z) with τ ∈ H . Recall

that the elliptic genus ϕN,(k,ℓ) is defined to be the genus belonging to the power series of
QN,(k,ℓ), see equation (2.17). Formally

ϕN,(k,ℓ)(M) =

∫

M

QN,(k,ℓ)(x1) · . . . · QN,(k,ℓ)(xn)

= m(q)n
∫

M

Q̃N,(k,ℓ)(x1) · . . . · Q̃N,(k,ℓ)(xn) = m(q)nϕ̃N,(k,ℓ)(M),

(2.21)

where

m(q) :=
1(

1− ζℓNq
k
N

)
∞∏

r=1

(1− qr)2(
1− ζℓNq

r+ k
N

)(
1− ζ−ℓ

N qr−
k
N

)

and Q̃N,(k,ℓ)(x) :=
QN,(k,ℓ)(x)

m(q) . The function ϕ̃N,(k,ℓ)(M) is called the normalized elliptic

genus of M of level N . It is holomorphic on H and transforms like a modular form of
weight zero, but it has terms of negative index in the Fourier expansions at some cusps.
We write ϕ̃N,(k,ℓ)(M)(qN ) for the normalized elliptic genus with q replaced by qN . It has
the advantage that in its Fourier expansion only integral powers of q appear.

The Atiyah-Singer Theorem, together with (2.19), (2.20), and (2.17), imply that
ϕ̃N,(k,ℓ)(M) can be regarded as the topological index of an infinite tensor product, namely

ϕ̃N,(k,ℓ)(M) = Ind
(
Lk ⊗RN,(k,ℓ)(q)

)
(2.22)

where RN,(k,l)(q) is the virtual bundle

RN,(k,ℓ)(q) =

(
∧
−ζℓ

N
q

k
N
T ∗ ⊗

∞⊗

r=1

∧
−ζℓ

N
qr+

k
N
T ∗ ⊗ ∧

−ζ−ℓ
N

qr−
k
N
T ⊗ SqrT

∗ ⊗ SqrT

)
(2.23)

with Chern character equals to

ch
(
RN,(k,ℓ)(q)

)
=

n∏

j=1



(
1− e−xjζℓNq

k
N

) ∞∏

r=1

(
1− e−xjζℓNq

r+ k
N

)(
1− exjζ−ℓ

N qr−
k
N

)

(1− e−xjqr) (1− exjqr)




and L is the line bundle with Chern class equals to c1(L) = − c1
N . We remark that in the

statement corresponding to (2.22) in [22], Appendix III, equation (16) on page 176, there
are some minor typos which we fixed here.
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Remark 2.12 Conceptually, the elliptic genera of level N can be interpreted as the
equivariant Hirzebruch χy-genus (evaluated at a N -root of unity) of the free loop space
LM . On the loop space LM, there is a canonical S1-action having M, the space of constant
loops, as its fixed point set. The tangent space TP (LM) at a constant loop P ∈ M is the
loop space L(TPM). Any loop in L(TPM) admits a Fourier expansion with coefficients in
TPM and as a consequence we obtain the following weight decomposition

TP (LM) ∼= L(TPM) = TPM⊕
∑

r∈N

qr(TPM⊗ C),

where S1 acts on the r-th summand with weight r ∈ N . Here q denotes a formal vari-
able that keeps track of the circle action on each summand. If we apply the equivariant
Atiyah-Singer index theorem formally for the canonical circle action on LM to compute
the equivariant genus associated to

x

1− e−x
(1 + ye−x) with y = −ζN ,

we obtain the heuristic formula

∫

M

n∏

j=1

xj ·

(
∞∏

r=−∞

1− e−xjζNq
r

1− e−xjqr

)

=

∫

M

n∏

j=1

xj ·

(
1− e−xjζN
1− e−xj

∞∏

r=1

(1− e−xjζNq
r)(1 − exjζ−1

N qr)ζN
(1− e−xjqr)(1− exjqr)

)

which (up to the formal factor “ζ
∑∞

r=1 1
N ”) coincides with the normalized elliptic genus

ϕ̃N,(0,1)(M)(q) when q = e2πiτ with τ ∈ H .
IfN = 2, then we obtain the equivariant signature of the loop space as initially described

by Witten for spin manifolds in the context of quantum field theory [35, 36]. We refer the
reader to [22, Section 7.4] for a more detailed treatment of elliptic genera as the χy genus
of the loop space of a manifold, where the convergence of the heuristic formula is more
carefully treated.

2.8. The type of the action. In this subsection we recall what the type of the action
of (M, J, S1) is and prove how it is related to the index of (M, J) (see [22, Appendix III,
Sections 6 and 8]).

Definition 2.4. [22, page 179] Given an integer N , the S1-action on (M, J, S1) is said to be

N -balanced if for every P ∈ M
S1

the residue class of w1(P )+· · ·+wn(P ) (mod N) does not
depend on P . Given anN -balanced action, the common residue class of w1(P )+· · ·+wn(P )
modulo N is called the type of the action.

In order to understand the geometric meaning of the previous definitions we need to
recall notions about the first Chern class of (M, J), its equivariant extension and the
index of (M, J). Let c1 ∈ H2(M;Z) be the first Chern class of the tangent bundle of

(M, J) and cS
1

1 ∈ H2
S1(M;Z) the equivariant first Chern class of (M, J, S1). We recall that,

given a fixed point P and the restriction map rP : H2
S1(M;Z) → H2

S1({P};Z), there exists

x ∈ H2
S1({P};Z) such that H2

S1({P};Z) ≃ Z[x] and

rP

(
cS

1

1

)
= (w1(P ) + · · · + wn(P ))x . (2.24)
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Henceforth we simply denote the restriction of an equivariant cohomology class c ∈
H∗

S1(M;Z) to a fixed point P by c(P ).
Next we recall what the index of (M, J) is.

Definition 2.5. [30] Given an almost complex manifold (M, J), the index of (M, J) is
the largest integer k0 such that, modulo torsion elements, c1 = k0 η for some nonzero
η ∈ H2(M;Z).

Therefore k0 is zero exactly if c1 is torsion, and is otherwise the largest integer such
that c1/k0 ∈ H2(M;Z).

Remark 2.13

(1) In [30] the third author proved that, given a compact almost complex manifold of
dimension 2n endowed with a circle action that preserves J and with isolated fixed
points, if the Todd genus of (M, J) is nonzero, then the index is bounded above by
n+ 1.

(2) If M is simply connected, then Hurewicz theorem asserts that π2(M) ≃ H2(M).
By the universal coefficient theorem, this implies that the group of homomorphisms
Hom(π2(M);Z) ≃ Hom(H2(M);Z) is isomorphic to H2(M;Z). It follows that for sim-
ply connected almost complex manifolds the index coincides with the non-negative
integer D such that 〈c1, π2(M)〉 = DZ. If D 6= 0, then this positive integer is also
known as the minimal Chern number of M (see [27, Definition 6.4.2]; observe that the
existence of a symplectic structure in [27, Definition 6.4.2] is not needed).

(3) If (M, ω) is a compact symplectic manifold endowed with a Hamiltonian circle action
with isolated fixed points (see Definition 2.1), then it is simply connected and its Todd
genus does not vanish. By part (2) of this remark it follows that for such manifolds
the index coincides with the minimal Chern number (see also [30, Remark 3.4])

The next proposition, which is already known (see [22, Appendix III, Section 8] and [9,
Section 9]), gives a relation between the index and the action. For the sake of completeness
we include a proof here.

Proposition 2.14. Let (M, J) be a compact almost complex manifold of dimension 2n
endowed with an S1-action preserving J and let k0 be its index and N a positive integer
dividing k0. Then the S1-action is N -balanced.

Remark 2.15 Observe that if k0 = 0, then the proposition says that the action is bal-
anced for every N , hence the sum of the weights at each fixed point P is independent of
P . Moreover, if the fixed point set is discrete, then Lemma 2.13 in [13] gives that this sum
is always zero.

Proof of Proposition 2.14. By (2.24) it is sufficient to prove that for all pairs of distinct

fixed points P1, P2 ∈ M
S1
, one has

cS
1

1 (P1)− cS
1

1 (P2)

N · x
∈ Z.

First suppose that P1 and P2 belong to the same connected componentM0 ofM
S1
. Observe

that the weights of the S1-action at a fixed point s ∈ M0 on the component of TM tangent
to M0 are zero, whereas those in the normal component to M0 in M do not depend on

s ∈ M0. By (2.24) it follows that cS
1

1 (P1) = cS
1

1 (P2).
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Now suppose that P1 and P2 are fixed points belonging to different connected compo-

nents of MS1
. Let γ : [0, 1] → M be a continuous path such that γ(0) = P1, γ(1) = P2 and

the image of the interval (0, 1) avoids other fixed points; this is possible since the normal
bundle to a fixed component is always of positive even dimension. Rotating this path
using the S1-action one obtains a topological two-sphere S with fixed points given by P1

and P2. Assume that the common stabilizer of the points of S is Zk (observe that k could
be one, in which case the common stabilizer if trivial). Let ι : S2 → M be an equivariant
map from a smooth sphere S2, where the action on S2 is given in cylindrical coordinates
by S1 ∋ λ = eιθ

′
∗(θ, h) = (θ+kθ′, h), and such that the image is exactly S. Let Q1 and Q2

be the two fixed points on S2 with ι(Qj) = Pj , j ∈ {1, 2}, and assume that the weight of
the S1-action on TS2|Q1 is k and that on TS2|Q2 is −k. If we pull-back the tangent bundle
of M to S2, then the weights of the S1-action on ι∗(TM) at the fixed point Qj coincide

with those at Pj ∈ M, for j ∈ {1, 2}. Thus (2.24) implies that ι∗(cS
1

1 )(Qj) = cS
1

1 (Pj) and
we have

Z ∋

∫

S
c1 =

∫

S2

ι∗(c1) =

∫

S2

ι∗
(
cS

1

1

)
=
ι∗
(
cS

1

1

)
(Q1)− ι∗

(
cS

1

1

)
(Q2)

k x

=
cS

1

1 (P1)− cS
1

1 (P2)

k x
, (2.25)

where the second equality follows by degree reasons and the last equality from the local-
ization formula (2.4).

If k0 is zero, or equivalently if c1 is torsion, then the integral on the left-hand side is

zero. Hence cS
1

1 (P1) = cS
1

1 (P2) for every pair of fixed points P1 and P2, and the action is
balanced for every N .

Otherwise, by the definition of k0 and the assumption that N divides k0, we have that
c1 = Nη for some non-zero η ∈ H2(M;Z). From (2.25) we have that

Z ∋

∫

S
η =

∫

S

c1
N

=
cS

1

1 (P1)− cS
1

1 (P2)

N · k x
,

and the claim follows. �

Remark 2.16

(1) In [13, Lemma 2.3] it was proved that if c1 is torsion or, equivalently, if k0 = 0, and
in addition the fixed points of the action are isolated, then the sum of the weights at
each fixed point is indeed zero, and so is the type of the action.

(2) Let Mk be the closure of the set of points with stabilizer Zk. Then from the proof of
the proposition it follows that, for all the fixed points in Mk, the S

1-action is N · k
balanced on Mk.

2.9. The rigidity of the elliptic genus. Let (M, J, S1) be an almost complex manifold
endowed with a circle action compatible with the almost complex structure J. Let N be a
positive integer that divides the index k0 of (M, J). In this subsection, we define what it
means for the elliptic genus ϕN (M) of level N to be rigid, but first we recall what rigidity
means for an equivariant bundle.

Definition 2.6. An S1-equivariant bundle V is called rigid if its equivariant index IndS1(V )
is independent of t, hence it lies in Z ⊂ Z[t, t−1].
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Note that, since taking t = 1 corresponds to taking the trivial S1-representation, rigidity
of an equivariant bundle V implies that

IndS1(V ) = IndS1(V )|t=1 = Ind(V ).

Now let RN,(0,1)(q) be the virtual bundle already defined in equation (2.23) for (k, l) =
(0, 1) by

RN,(0,1)(q) :=

(
∧−ζNT

∗ ⊗
∞⊗

r=1

∧−ζNqrT
∗ ⊗ ∧−ζ−1

N
qrT ⊗ SqrT

∗ ⊗ SqrT

)
.

We can write

RN,(0,1)(q) =
∑

j≥0

Rj q
j

for some finite dimensional virtual bundles Rj defined for every non-negative integer j .
For instance

R0 = ∧−ζNT
∗ , and R1 = ∧−ζNT

∗ ⊗
(
(1− ζN )T ∗ +

(
1− ζ−1

N

)
T
)
.

Recall that the normalized elliptic genus ϕ̃N,(0,1) of level N is defined as the index of the
virtual bundle RN,(0,1)(q) and the elliptic genus ϕN (M) of level N is defined by

ϕN (M) := ϕN,(0,1)(q) = m(q)
dim (M)

2 ϕ̃N,(0,1) = m(q)
dim (M)

2

∑

j≥0

Ind(Rj) q
j,

where

m(q) :=
1

1− ζN

∞∏

r=1

(1− qr)2

(1− ζNqr)
(
1− ζ−1

N qr
) .

We define the equivariant elliptic genus ϕN (M, t) of level N as

ϕN (M, t) := m(q)
dim (M)

2

∑

j≥0

IndS1(Rj) q
j .

Definition 2.7. The equivariant elliptic genus ϕN (M, t) of level N is rigid if the equivari-
ant bundles Rj are rigid for every j .

Note that the rigidity of the equivariant elliptic genus ϕN (M, t) just means that

ϕN (M, t) = ϕN (M, t)|t=1 = ϕN (M).

If N = 2 and (M, J, S1) is a spin manifold, then the rigidity of the equivariant elliptic
genus ϕ2(M, t) was conjectured by Witten [35, 36] following theoretical physics ideas on
the loop space of M. The rigidity of ϕ2(M, t) was first proven by Taubes [33] who made
Witten’s program rigorous and later by Bott and Taubes [9] who simplified Taubes original
approach using the language of equivariant index theory and equivariant cohomology. The
following theorem due to Hirzebruch generalizes the Rigidity Theorem by Bott, Taubes
and Witten to almost complex manifolds that are not necessarily spin.

Theorem 2.17 ([22], theorem on page 181).
Let (M, J) be a compact almost complex manifold with index k0. Suppose that (M, J) is
endowed with an S1-action preserving J. Then for every positive integer N dividing k0

the elliptic genus ϕN (M, t) of level N is rigid, hence it equals the (non-equivariant) elliptic
genus ϕN (M). If the type of the action is not zero (mod N), then ϕN (M) ≡ 0.
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3. From number theory to geometry

3.1. From the index to the Betti numbers: First consequences. The next result
is an easy consequence of Theorem 2.17 and identifies a category of manifolds for which
certain elliptic genera always vanish.

Proposition 3.1. Let (M, ω, ψ) be a symplectic toric manifold with index k0. Then for
every integer N ≥ 2 dividing k0, the elliptic genus ϕN (M) of level N vanishes identically.

Proof. Let N be an integer dividing the index k0. By Theorem 2.17 it is enough to
find a subcircle S1 of the torus T acting on M such that the type of the S1-action is
not zero (mod N). Let P be a fixed point of the T-action on M, the latter being of
dimension 2n. Modulo a GLn(Z)-transformation we can assume that the weights of the
T action at P are the vectors in the standard basis x1, . . . , xn of t∗ ≃ (Rn)∗, namely
xj(ξ1, . . . , ξn) = ξj for every j ∈ {1, . . . , n} and every (ξ1, . . . , ξn) ∈ t ≃ Rn. Any circle
subgroup S1 of T is determined by a vector α = (α1, . . . , αn), where αj ∈ Q for every
j, and S1 = exp{t · (α1, . . . , αn) : t ∈ R} ⊂ T. By rescaling the rational coordinates αj

we can assume that they are indeed integral and that the vector α is primitive in the
lattice ℓ∗ ≃ (Zn)∗, namely that if α = m · β for some m ∈ Z and β ∈ ℓ∗, then m = ±1.
If we restrict the T action to that of the above circle, the weights at P of the induced
S1-action are given by xj(α) = αj for every j ∈ {1, . . . , n}. Therefore, in order to prove
the proposition, it is enough to find a primitive α ∈ ℓ∗ such that α1 + · · · + αn is not
zero (mod N). This is easily seen to be always possible, as if the picked α = (α1, . . . , αn)
satisfying α1+· · ·+αn ≡ 0 (mod N), it would be enough to replace it with (α1+1, . . . , αn),
and if the latter were not primitive, dividing the coordinates by the common divisor would
yield the desired primitive vector. �

The next result is an application of Theorem 2.11.

Proposition 3.2. Let (M, J) be a compact almost complex manifold with index k0. Sup-
pose that for every integer N ≥ 2 dividing k0, the elliptic genus ϕN (M) of level N vanishes
identically. Then

k0 −1∑

j=0

(−y)j divides χy(M).

Proof. If k0 = 1 there is nothing to prove. Thus suppose that k0 ≥ 2. As

(−1)k0 −1
k0 −1∑

j=0

(−y)j =
k0 −1∏

ℓ=1

(
y + e

2πiℓ
k0

)
,

it is enough to prove that χy(M) = 0 when y = −e
2πil
k0 , for all ℓ ∈ {1, . . . ,k0 −1}.

If gcd(ℓ,k0) = 1 then Theorem 2.11, together with the assumption that ϕk0
(M) = 0,

imply that χy(M) = 0 for y = −e
2πiℓ
k0 .

If gcd(ℓ,k0) = a > 1 then it is sufficient to observe that, for N := k0

a and ℓ′ := ℓ
a ,

one has e
2πiℓ
k0 = e

2πiℓ′

N . Since by assumption ϕN (M) vanishes, Theorem 2.11 gives that

χy(M) = 0 for y = −e
2πiℓ′

N = −e
2πiℓ
k0 . �

In Subsection 3.2, we specialize to the case in which the manifold is symplectic and is
endowed with a Hamiltonian circle action with isolated fixed points to conclude that if
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index is maximal, namely k0 = n + 1, it is sufficient to assume that the elliptic genus of
level n+1 vanishes to conclude that χ(M) =

∑n
j=0(−y)

j . We indeed prove that M is also
homotopy equivalent to CPn.

We are now ready to prove Corollary 1.1.

Proof of Corollary 1.1. Combining Propositions 3.1 and 3.2 we obtain that for a sym-

plectic toric manifold of index k0, the polynomial
∑

k0 −1
j=0 (−y)j divides χy(M). For the

claim (1.1) of Corollary 1.1 what is left to prove is that, for a symplectic toric manifold of
dimension 2n, one has

χy(M) =

n∑

j=0

b2j(M)(−y)j , (3.1)

and then replacing −y with y yields the desired claim. This fact follows from two ob-
servations: the first is that, picking a circle subgroup S1 of the torus T acting on M

such that the fixed points of the S1-action are the same of those of the T action, gives
χy(M) =

∑n
j=0Nj(−y)

j, where Nj is the number of fixed points with j negative weights

of the S1-action (see for instance [22, Section 5.7] and [14, Section 3]); the second is that
the number Nj is precisely b2j(M).

If k0 = n+1, then, as we are assuming that M is connected, b0(M) = 1 and (1.1) implies
that b = (1, 1, . . . , 1). Since, as observed above, Nj = b2j(M) for every j, we have that
the total number of fixed points is

∑
j Nj =

∑
j b2j(M) = n + 1. On a symplectic toric

manifold the number of fixed points corresponds exactly to the vertices of the Delzant
polytope ψ(M), which is of dimension n. However the only Delzant polytope of dimension
n with n+1 vertices is –up to GLm(Z)-transformations– the smooth simplex of dimension
n. By Delzant’s Theorem [11] we obtain the desired claim.

If k0 = n, then (1.1) tells us that the polynomial
∑n−1

j=0 (−y)
j divides χy(M), i.e.

χy(M) = (ℓ(−y) +m)
n−1∑

j=0

(−y)j .

for some ℓ,m ∈ Z. Since b0(M) = b2n(M) = 1, we obtain that ℓ = m = 1 and hence

χy(M) = (−y + 1)

n−1∑

j=0

(−y)j = 1 + 2(−y) + · · · + 2(−y)n−1 + (−y)n.

From (3.1) it follows that b = (1, 2, . . . , 2, 1).
If k0 = n− 1, then we obtain as before that

χy(M) = (ℓ(−y)2 +m(−y) + r)

n−2∑

j=0

(−y)j

for some ℓ,m, r ∈ Z, and from (3.1) and the fact that b0(M) = b2n(M) = 1 we infer
ℓ = r = 1. By multiplying out the above expression, we obtain the stated vector b of
Betti numbers.

If k0 = n− 2, we proceed as before and obtain

χy(M) = (ℓ(−y)3 +m(−y)2 + r(−y) + s)

n−3∑

j=0

(−y)j ,
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for some ℓ,m, r, s ∈ Z. Since b0(M) = b2n(M) = 1, (3.1) implies that ℓ = s = 1. Hence we
get

χy(M) = (−y)n + (1 +m)(−y)n−1 + (1 +m+ r)(−y)n−2 + (2 +m+ r)(−y)n−3 + . . .

· · ·+ (2 +m+ r)(−y)3 + (1 +m+ r)(−y)2 + (1 + r)(−y) + 1.

The symmetry b2(M) = b2n−2(M) further yields m = r and the desired vector b of Betti
numbers. Finally, replacing the variable y with −y finishes the proof. �

3.1.1. An application to smooth reflexive polytopes. We would like to give a straightforward
application of Corollary 1.1 to smooth (or Delzant) reflexive polytopes. In Definition 2.3
it is recalled what smooth (or Delzant) polytopes are. A particularly interesting subclass
of such combinatorial objects is given by smooth reflexive polytopes.

Definition 3.1. An n-dimensional polytope ∆ is called reflexive if all its vertices belong
to Zn ⊂ Rn, it contains zero in its interior, and such that

∆ =

k⋂

j=1

{x ∈ Rn : 〈x, νj〉 ≤ 1} ,

where the νj ∈ Zn are the primitive outward normal vectors to the hyperplanes defining
the facets, for j ∈ {1, . . . , k}. A smooth reflexive polytope is a polytope that is at the
same time smooth (or Delzant) and reflexive.

The importance of the smoothness condition relies in the fact that, via the Delzant
Theorem, many combinatorial features of ∆ have a topological counterpart in the corre-
sponding manifold. Hence it is often the case that one can use the topology of the manifold
to derive combinatorial properties of the associated polytope. For instance let f be the
f -vector of ∆, namely f = (f0, . . . , fn), where fj is the number of faces of ∆ of dimension
j. Then the h-vector of ∆ is defined to be h = (h0, . . . , hn), where

hj =

j∑

r=0

(−1)j−r

(
n− r

n− j

)
fn−r for all j ∈ {0, . . . , n}.

The following result is a first instance of the combinatorial–topological correspondence
mentioned above; for a proof see for instance [12, Lemma 3.8] and the references therein.
.

Lemma 3.3. Let (M, ω, ψ) be a symplectic toric manifold of dimension 2n and ∆ = ψ(M).
Then the h-vector of ∆ is exactly the vector of even Betti numbers of M, namely hj =
b2j(M) for every j ∈ {0, . . . , n}.

Given a smooth polytope ∆ and the corresponding symplectic toric manifold (M, ω, ψ),
with ψ(M) = ∆, the reflexivity condition on ∆ corresponds exactly to the so-called mono-
tonicity3 of M, namely c1 = [ω] (see for instance [12, Proposition 3.10]). This allows one
to translate even more properties of M into those of ∆, as the following lemma illustrates.

3The monotonicity condition is sometimes also referred to as the symplectic Fano condition, and more
generally it means c1 = λ[ω] for some λ ∈ R. However one can prove (see for instance [12, Lemma 5.2])
that if (M, ω) admits a Hamiltonian action, then λ must be positive. Hence for symplectic toric manifolds
satisfying c1 = λ[ω] one can rescale the symplectic form to obtain c1 = [ω].
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Before stating it, we recall that given a rational segment e = (v1, v2) between two points
v1, v2 in Rn, namely

v2 − v1 = l(e)w for some l(e) ∈ R+ and w ∈ Zn , (3.2)

its affine length is the positive number l(e) defined by the above displayed equation if w is
the unique primitive vector in Zn satisfying (3.2). We recall that given a symplectic toric
manifold (M, ω, ψ), the edges of ψ(M) correspond, via the moment map, to symplectic
spheres in M. As the set of these spheres generate H2(M;Z), the monotonicity condition
c1 = [ω] has this important consequence (see [12, Proposition 5.4])

Lemma 3.4. Let ∆ be a smooth reflexive polytope and (M, ω, ψ) the corresponding mono-
tone symplectic toric manifold of index k0. Then we have

k0 = gcd{l(e) : e ∈ E},

where E is the set of edges of ∆.

Roughly speaking, for a monotone symplectic toric manifold the index becomes “visi-
ble” in the associated polytope. These two of known lemmas, together with the Delzant
correspondence and Corollary 1.1, are all of the necessary ingredients for the proof of the
following.

Corollary 3.5. Let ∆ be a smooth reflexive polytope of dimension n with h-vector h =
(h0, . . . , hn). Define k0 to be the great common divisor of the affine lengths of its edges.
Then

k0 −1∑

j=0

yj divides
n∑

j=0

hjy
j .

Note that Corollary 3.5 is a combinatorial result concerning reflexive polytope. However
its proof requires essentially two deep facts: the topological–combinatorial correspondence
between monotone symplectic toric manifolds and smooth reflexive polytopes, and the
rigidity theorem of elliptic genera, which is the key ingredient for the proof of Corollary
1.1. Thus the following natural question arises:

Question 3.6 Is there a different, possibly entirely combinatorial proof of Corollary 3.5?

3.2. From the index to the Betti numbers: A closer look. In this subsection we
prove Theorem 1.2. Before specializing to the case in which the index is maximal, we
introduce some polynomials, together with their properties, that generalize the Hilbert
polynomial of an almost complex manifold.

Let (M2n, J) be a compact almost complex manifold of dimension 2n with non-zero first
Chern class c1. Let N be a non-zero integer dividing c1, namely c1

N ∈ H2(M;Z). Let

K = ∧nT ∗ and L = K
1
N , hence c1(L) = − c1

N . The Hilbert polynomial of (M, J) (see for
instance [30]) is the polynomial H whose values at an integer k are given by

H(k) := Ind
(
Lk
)
.

Similarly, for every integer k and m > 0, we define

Hm(k) := Ind
(
Lk ⊗ ∧mT ∗

)
. (3.3)
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By the Atiyah-Singer Theorem it is easy to see that Hm(k) depends on k in a polynomial
way, and the polynomial Hm(x), with x ∈ C is defined to be the unique polynomial whose
values at an integer k are given by (3.3).

The following proposition is a generalization of [30, Proposition 4.1 (2)].

Proposition 3.7. Let (M2n, J, S1) be a compact almost complex manifold which is acted

on by a circle S1 which preserves J and with discrete fixed point set M
S1
. Assume that

the first Chern class c1 is non-zero. Let N be a non-zero integer and L the line bundle

(∧nT ∗)
1
N . Then for every integer k and 0 ≤ m ≤ n

Ind
(
Lk ⊗ ∧mT ∗

)
= (−1)n Ind

(
L−k ⊗ ∧n−mT ∗

)
= (−1)n Ind

(
LN−k ⊗ ∧mT

)
. (3.4)

Hence for every x ∈ C we obtain

Hm(x) = (−1)nHn−m(−x). (3.5)

Proof. In order to prove (3.4) we use an equivariant extension of the bundles involved.
Indeed, [20, Lemma 3.2] implies that the line bundle L has an equivariant extension,
which is called LS1 . The exterior powers of the tangent and cotangent bundles naturally
inherit an S1-action from that on M.

As c1 = −N · c1(L), the equivariant extensions of the Chern classes satisfy cS
1

1 =

−N · cS
1

1 (LS1)+a x for some a ∈ Z, where x is the degree two generator of H∗
S1(pt;Z). We

want to prove that, for the sake of this proof, the constant a can be set to zero. Indeed
first of all observe that the equivariant extension LS1 is not unique, as LS1 ⊗Lb is another
such extension, where Lb is the trivial line bundle endowed with fiber-wise action given
by λ · z = λbz, for b ∈ Z. At the level of Chern classes this means that, after choosing

an equivariant extension LS1 with Chern class cS
1

1 (LS1), the Chern classes of all the other

possible equivariant extensions are given by cS
1

1 (LS1) + b x, with b ∈ Z. Therefore

cS
1

1 = −N
(
cS

1

1 (LS1) + b x
)
+ a x. (3.6)

By precomposing the S1-action with the map from S1 to S1 that sends λ to λN we obtain
a new action where all the weights at the fixed points get multiplied by N . Restricting

(3.6) to the fixed points, we obtain
∑n

j=1wj(P )x = −N(cS
1

1 (LS1)|P + b x) + a x, where
now a is divisible by N . Hence we can choose a different equivariant extension of LS1 with
b = a

N . Observe that the operations of choosing a different equivariant extension and of
lifting the action change the equivariant index, but not the non equivariant one. Thus in
what follows we can assume that

n∑

j=1

wj(P )x = −N · cS
1

1 (LS1)|
P
. (3.7)

Denote the sum of the weights w1(P ) + . . .+wn(P ) at a fixed point P by W (P ). Then
the localization theorem in equivariant K-theory (2.8) implies that the equivariant index
is equal to

IndS1

(
Lk ⊗ ∧mT ∗

)
=

∑

P∈MS1

t−kW (P )
N em

(
t−w1(P ), . . . , t−wn(P )

)
∏n

j=1

(
1− t−wj(P )

) ,
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where ej denotes the j-th elementary symmetric polynomial in n-variables. Let S̃1 denote

the circle S1 with reversed orientation. Then S̃1 acts on M with weights at each fixed
point P given by −w1(P ), . . . ,−wn(P ). Hence

IndS̃1

(
Lk ⊗ ∧mT ∗

)
=

∑

P∈MS1

tk
W (P )

N em
(
tw1(P ), . . . , twn(P )

)
∏n

j=1

(
1− twj(P )

)

= (−1)n
∑

P∈MS1

tk
W (P )

N em
(
tw1(P ), . . . , twn(P )

)

tW (P )
∏n

j=1(1− t−wj(P ))

= (−1)n
∑

P∈MS1

t(k−N)
W (P )

N em
(
tw1(P ), . . . , twn(P )

)
∏n

j=1

(
1− t−wj(P )

) (3.8)

= (−1)n IndS1

(
LN−k ⊗ ∧mT

)
.

Moreover, noting that t−W (P )em(tw1(P ), . . . , twn(P )) = en−m(t−w1(P ), . . . , t−wn(P )) the ex-
pression in (3.8) also equals

(−1)n
∑

P∈MS1

tk
W (P )

N en−m

(
t−w1(P ), . . . , t−wn(P )

)
∏n

j=1

(
1− t−wj(P )

) = (−1)n IndS1

(
L−k ⊗ ∧n−mT ∗

)
.

As observed in (2.9) the equalities in (3.4) are obtained by forgetting the circle actions,
namely by taking t→ 1.

¿From the definition of Hm(x) and (3.4) it follows that Hm(k) = (−1)nHn−m(−k)
for every integer k. This implies (3.5), as the polynomial Hm(x) − (−1)nHn−m(−x) has
infinitely many zeros. �

As an example we compute these polynomials for the complex projective space.

Proposition 3.8. The Hilbert polynomial Hm(x) of the projective space CPn is given by

Hm(x) =
(−1)n

m!(n−m)!
(x− 1) · . . . · (x− (n−m)) · (x+ 1) · . . . · (x+m).

In particular,
Hm(0) = Ind(∧mT ∗) = (−1)m

and
χy = 1− y + y2 + . . .+ (−1)nyn.

Proof. Consider the S1-action on CPn given by

λ · [z0 : z1 : . . . : zn] = [z0 : λ
w1z1 : . . . : λ

wnzn] ,

where w1, . . . , wn are distinct, non-zero integers.
This S1-action is the restriction to a circle of the standard toric action of the n-

dimensional torus T n on CPn . The circle action has P0 := {[1 : 0 : . . . : 0], P1 := [0 :
1 : . . . : 0], . . . , Pn := [0 : 0 : . . . : 1]} as a set of fixed points. The weights of the circle
action are given at P0 by {wk}

n
k=1 and at Pj by {−wj +(1− δjk)wk}

n
k=1 for j ∈ {1, . . . , n}.

Let L be the line bundle such that c1(L) = − c1
n+1 .We argue as in the proof of Proposition

3.7 and consider an equivariant extension of L satisfying (3.7). Thus in this case it is easy
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to check that Lk
S1(P0) = t−k

w1+...+wn
n+1 and Lk

S1(Pj) = t−k
w1+...+wn

n+1 tkwj , for all j ∈ {1, . . . , n}.
Since the integers w1, . . . , wn can be chosen arbitrarily as long as they are all distinct and
non-zero (as otherwise the action would not have isolated fixed points) we choose them
such that w1 + · · · + wn = 0. Then the localization formula for the computation of the
index yields

IndS1

(
Lk
S1 ⊗ ∧mT ∗

)
=
em(t−w1 , . . . , t−wn)∏n

j=1(1− t−wj)
+

n∑

j=1

tkwjem(twj−w1 , . . . , twj , . . . , twj−wn)

(1− twj )
∏n

r=1,r 6=j(1− twj−wr)
.

Now we would like to express the equivariant index of Lk
S1 ⊗ ∧mT ∗ in terms of the equi-

variant index of Lk
S1 , the latter given by the formula

IndS1

(
Lk
S1

)
=

1∏n
j=1(1− t−wj)

+
n∑

j=1

tkwj

(1− twj)
∏n

r=1,r 6=j(1− twj−wr)
.

¿From the identity below between elementary symmetric polynomials

em(twj−w1 , . . . , twj , . . . , twj−wn) = tmwjem(t−w1 , . . . , t−wj , . . . , t−wn)

+ (−1)m+1(1− t−wj)

m−1∑

p=0

(−1)ptwj(p+1)ep(t
−w1 , . . . , t−wj , . . . , t−wn),

it follows that

IndS1

(
Lk
S1 ⊗ ∧mT ∗

)
= em(t−w1 , . . . , t−wn) IndS1

(
Lk+m
S1

)

+ (−1)m+1
m−1∑

p=0

(−1)pep
(
t−w1 , . . . , t−wn

)(
IndS1

(
Lk+p+1
S1

)
− IndS1

(
Lk+p
S1

))
.

By taking t→ 1, we obtain the equality

Ind
(
Lk ⊗ ∧mT ∗

)

=

(
n

m

)
Ind

(
Lk+m

)
+ (−1)m+1

m−1∑

p=0

(−1)p
(
n

p

)(
Ind

(
Lk+p+1

)
− Ind

(
Lk+p

))
.

Recall that the Hilbert polynomial H0(x) of the projective space CPn is given by

H0(x) =
(−1)n

n!
(x− 1) · . . . · (x− n) .

We claim that for all integers k 6= 0 and all integers 0 ≤ m ≤ n, the Hilbert polynomial
H0(x) satisfies the formula

(
n

m

)
m

k
H0(k +m) = (−1)m+1

m−1∑

p=0

(−1)p
(
n

p

)
n
H0(k + p+ 1)

(k + p)
. (3.9)
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The statement follows from the formula as it implies that

Ind
(
Lk ⊗ ∧mT ∗

)

=

(
n

m

)
H0(k +m) + (−1)m+1

m−1∑

p=0

(−1)p
(
n

p

)(
H0(k + p+ 1)−H0(k + p)

)

=

(
n

m

)
H0(k +m) + (−1)m+1

m−1∑

p=0

(−1)p
(
n

p

)
n
H0(k + p+ 1)

(k + p)

=

(
n

m

)
H0(k +m) +

m

k

(
n

m

)
H0(k +m) =

(
n

m

)
H0(k +m)(k +m)

k

=
(−1)n

m!(n−m)!
(k − 1) · . . . · (k − (n−m))(k + 1) · . . . (k +m) .

We conclude the proof by proving the claim for fixed k by induction on m. For m = 1 the
formula is true. We next show that both sides satisfy the same recursion as m 7→ m+ 1.
Write hL(m) and hR(m) for the left-hand side and the right-hand side of the formula in
3.9, respectively. First, we have the recursion

hR(m+ 1)− hR(m) = (−1)m
(
n

m

)
n
H0(k +m+ 1)

k +m
.

Furthermore, we compute

hL(m+ 1)− hL(m) = (−1)m
(

n

m+ 1

)
m+ 1

k
H0(k +m+ 1)− (−1)m+1

(
n

m

)
m

k
H0(k +m)

= (−1)m
(

n

m+ 1

)
m+ 1

k
H0(k +m+ 1)− (−1)m+1

(
n

m

)
m

k

H0(k +m+ 1)

k +m
(k +m− n)

= (−1)m
(
n

m

)
n
H0(k +m+ 1)

k +m
.

Thus hL(m) and hR(m) satisfy the same recursion if m 7→ m+1, hence the formula follows
by induction and we finish the proof of the claim. �

Remark 3.9 In the figure below, the black dots represent the position on the real line of
the zeroes of the Hilbert polynomials Hm(x) for m ∈ {0, 1, . . . , n − 1, n}. At each stage,
starting from m = 0, the zeroes of the polynomials are shifted one unit to the left but
they intriguingly jump one more unit left when they reach the origin.

In order to introduce the second important property of the polynomials Hm, we first
recall the following: For a compact almost complex manifold equipped with a circle action
and isolated fixed points, it is well-known (see for instance [22, 26]) that Ind(∧mT ∗) =
(−1)mNm, where Nm denotes the number of fixed points with m negative weights. Since
Hm(0) is by definition Ind(∧mT ∗), one has that

♯fixed points =
n∑

m=0

Nm =
n∑

m=0

(−1)mHm(0).

The next proposition generalizes the above equation.
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m = 0

-1-2−(n− 1)−n 0 1 2 n− 1 n

m = 1

-1-2−(n− 1)−n 0 1 2 n− 1 n

m = n− 1

-1-2−(n− 1)−n 0 1 2 n− 1 n

m = n

-1-2−(n− 1)−n 0 1 2 n− 1 n

Proposition 3.10. Let (M2n, J, S1) be a compact almost complex manifold which is acted

on by a circle S1 which preserves J and with discrete fixed point set MS1
. Then, for every

x ∈ C,

♯fixed points =

n∑

m=0

(−1)mHm(x).

Proof. Following the first part of the proof of Proposition 3.7, we consider an equivariant
extension of the bundle L with respect to the new action of S1 such that the restriction of

L to the fiber over a fixed point P is the representation t−
w1(P )+···+wn(P )

N = t−
W (P )

N . Then,
for every integer k, we have

∑

P∈MS1

t−k
W (P )

N =
∑

P∈MS1

t−kW (P )
N

(
1− t−w1(P )

)
· . . . ·

(
1− t−wn(P )

)
(
1− t−w1(P )

)
· . . . ·

(
1− t−wn(P )

)

=
∑

P∈MS1

t−kW (P )
N

∑n
m=0(−1)mem

(
t−w1(P ), . . . , t−wn(P )

)
(
1− t−w1(P )

)
· . . . ·

(
1− t−wn(P )

)

=

n∑

m=0

(−1)m IndS1

(
Lk ⊗ ∧mT ∗

)
.

By taking t→ 1, we obtain

♯fixed points =

n∑

m=0

(−1)m Ind
(
Lk ⊗ ∧mT ∗

)
=

n∑

m=0

(−1)mHm(k).

As the result holds for every integer k, it holds for every x. �

We are now ready to specialize to the case in which the index is maximal. First of all
we have the following

Lemma 3.11. Let (M2n, J, S1) be a compact almost complex manifold which is acted on by

a circle S1 which preserves J and with discrete fixed point set MS1
. Let N0 be the number
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of fixed points with no negative weights. Assume that the index k0 is n+ 1. Then

Hn(x) = (−1)n
N0

n!
(x+ 1) · . . . · (x+ n).

Proof. From [30, Proposition 5.1] we know that the polynomial H0 is known in this case,
and it is given by

H0(x) = (−1)n
N0

n!
(x− 1) · · · (x− n).

Note that the polynomial H(x) in [30] is exactly H0(−x). Then equation (3.5) gives the
desired conclusion. �

The next theorem is the key ingredient for the proof of Theorem 1.2.

Theorem 3.12. Let (M, J, S1) be a compact almost complex manifold of dimension 2n
which is acted on by a circle S1 which preserves J and with discrete fixed point set. Let N0

be the number of fixed points with 0 negative weights. Assume that the index k0 is n+ 1.
If the elliptic genus ϕn+1(M) vanishes, then

♯fixed points = N0(n+ 1).

In order to prove Theorem 3.12 we need to analyze the first terms of the Fourier expan-
sions of the elliptic genus of level N = n + 1 at the cusps. First note that by (2.18) the
vanishing of the elliptic genus ϕN (M) implies its vanishing at all cusps, i.e., the vanishing
of ϕN,(k,ℓ)(M) for every primitive N -division point w = k

N τ + ℓ
N . In particular, we also

have ϕ̃N,(k,ℓ)(M)(qN ) = 0 for the normalized elliptic genus defined in (2.21). On the other

hand, from (2.22), it is easy to see that the first terms of ϕ̃N,(k,ℓ)(M)(qN ) in terms of
powers of q are given by

ϕ̃N,(k,ℓ)(M)
(
qN
)
= Ind

(
Lk
)
−Ind

(
Lk ⊗ T ∗

)
ζℓNq

k+. . .+(−1)m Ind
(
Lk ⊗ ∧mT ∗

)
ζℓmN qkm

− Ind
(
Lk ⊗ T

)
ζ−ℓ
N qN−k + . . .+ (−1)r Ind

(
Lk ⊗ ∧rT

)
ζ−ℓr
N q(N−k)r + · · · , (3.10)

where m and r are chosen so that km and (N −k)r < N , and what is left contains powers
of q with exponent greater than max{km, (N − k)r}. The next proposition analyses this
expansion when N = n+ 1.

Proposition 3.13. Let (M, J) be a compact almost complex manifold of dimension 2n,
with n ≥ 2. Assume that the index k0 is n+ 1. If ϕn+1(M) = 0 then

Hm(1) = Ind (L⊗ ∧mT ∗) = 0

for 0 ≤ m ≤ n− 1.

Proof. As explained above, the vanishing of ϕN (M) implies ϕ̃N,(k,ℓ)(M)(qN ) for every prim-

itive N -division point k
N τ+

ℓ
N . When N = n+1 and k = 1 we can choose m = n−1, r = 1

and obtain from (3.10)

0 = ϕ̃n+1,(1,ℓ)(M)
(
qn+1

)

= Ind(L)− Ind(L⊗ T ∗)ζℓn+1q
1 + . . .+ (−1)n−1 Ind(L⊗ ∧n−1T ∗)ζ

ℓ(n−1)
n+1 q(n−1)

+ (−1)n Ind(L⊗ ∧nT ∗)ζ lnn+1q
n − Ind(L⊗ T )ζ−ℓ

n+1q
n + higher terms.

Since for n ≥ 2 the exponents of q in the above expression are all distinct, we obtain
the desired claim. �
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Proof of Theorem 3.12. Combining Proposition 3.10 for x = 1 and Proposition 3.13 we
have that the number of fixed points is

∑n
m=0(−1)mHm(1) = (−1)nHn(1) which, by

Lemma 3.11, equals N0(n+ 1). �

The next theorem combines results already known in the literature, and is the second
key ingredient for the proof of Theorem 1.2.

Theorem 3.14. Let (M, ω, ψ) be a compact, connected symplectic manifold of dimension
2n which is acted on by a circle in a Hamiltonian way and isolated fixed points. Let χ(M)
be its Euler characteristic and k0 its index, and assume that χ(M) = k0 = n + 1. Then
M is complex cobordant and homotopy equivalent to CPn.

Proof. The proof of this theorem combines results of Hattori [20], Tolman [34], and Char-
ton [10] in the following way.

Since we are assuming χ(M) = n + 1 and M is endowed with a Hamiltonian S1-action
with isolated fixed points, the Betti numbers satisfy b2j(M) = 1 for all j ∈ {0, . . . , n}.
As in particular b2(M) = 1 we can rescale the symplectic form to be integral, namely
[ω] ∈ H2(M;Z) (or rather the image of this group in H2(M;R)). Consider the prequanti-
zation line bundle L whose first Chern class is [ω] and observe that it admits an equivariant
extension LS1 . Indeed, since the action is Hamiltonian, the symplectic form can be com-
pleted to an equivariant symplectic form [ω + ψ] ∈ H2

S1(M;Z), condition that implies the
existence of LS1 (see [21, Theorem 1.1, Corollary 1.2]). The equivariance of the projection
map LS1 → M implies that over a fixed point P the complex line LS1(P ), the restriction
of LS1 at P , inherits an S1-action; moreover the weight of the S1-representation is exactly
given by ψ(P ). By [34, Proposition 3.4] we have that ψ(P ) 6= ψ(Q) for all pairs of distinct
fixed points P and Q. Finally, as

∫
M
c1(L) =

∫
M
ωn 6= 0, L is quasi-ample in the sense

of Hattori [20, Section 3]. Moreover, since H2(M;Z) is a one-dimensional lattice and the
index of M is n+ 1, we can rescale further the symplectic form to satisfy c1 = (n+ 1)[ω],

and hence the equivariant extensions to satisfy cS
1

1 = (n+1)[ω+ψ]+a for some a ∈ Z. Re-
stricting the previous expression to the fixed points yields

∑n
j=1wj(P ) = (n+1)ψ(P ) + a

for every P ∈ M
S1
. We can conclude that L satisfies what Hattori calls condition D

(see [20, page 447]). In conclusion we can apply [20, Theorem 5.7], that asserts that the
S1-action at the fixed point set resembles that of the standard S1-action on CPn (see the
proof of Proposition 3.8), namely, there exist integers w1, . . . , wn, such that the weights
at the n+1 fixed points of the action on M are exactly those given by the standard linear
action on CPn. Since all Chern numbers can be computed entirely from the weights at
the fixed points (see (2.7)), we deduce that all Chern numbers agree with those of CPn

with standard complex structure. This, in turns, implies that M is complex cobordant to
CPn.

To deduce the existence of a homotopy equivalence we apply results of Tolman [34] and
Charton [10]. First of all, [34, Corollary 3.19] asserts that for all j ∈ {0, . . . , n}, the group

H2j(M;Z) is generated by c j1 suitably rescaled, and the rescaling factor depends just on
the weights at the fixed points. It follows that if the weights are standard –namely they
agree with those of the standard action on CPn– then the cohomology ring is isomorphic
to that of CPn. Given that the cohomology rings are isomorphic, the existence of the
homotopy equivalence follows then from the results of Charton in [10]. Indeed by Morse
theory M is homotopy equivalent to a CW complex with exactly one cell of dimension 2j,
for all j ∈ {0, . . . , n}, and the conclusion then follows from [10, Theorem 5.2]. �
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We are now ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2. If M is complex cobordant to CPn, then their elliptic genera are
the same; indeed (elliptic) genera only depend on their generating function and the Chern
numbers of the manifold which, for complex cobordant manifolds, are the same. However
the elliptic genus of level n+ 1 of CPn vanishes, as it is proved4 in [22].

Conversely, suppose that (M, ω, ψ) is a compact, connected symplectic manifold of di-
mension 2n and index k0 = n+1 which is acted on effectively by a circle in a Hamiltonian
way, with moment map ψ : M → R and isolated fixed points. Then M can be endowed
with an almost complex structure J compatible with ω and invariant under the S1-action.
Hence, if we assume that the elliptic genus of level n+1 vanishes, then (M, J, S1) satisfies
the hypotheses of Theorem 3.12. Since the action is Hamiltonian and the manifold con-
nected, the number of fixed points with no negative weights is one. Hence the number of

fixed points |MS1
| is exactly n+1. However it is well-known that, if the action has discrete

fixed point set, then the Euler characteristic χ(M) is precisely |MS1
|. Thus we can apply

Theorem 3.14 to conclude the proof. �

Corollary 3.15. Under the same assumptions as Theorem 3.14, the m-th Hilbert polyno-
mial Hm(x) of (M, ω, ψ) is given by

Hm(x) =
(−1)n

m!(n−m)!
(x− 1) · . . . · (x− (n −m)) · (x+ 1) · . . . · (x+m) .

Proof. As argued in the proof of Theorem 3.14, the complex projective space CPn and M

have the same Chern numbers. The statement follows because the Hilbert polynomials of
an almost complex manifold are totally determined by their Chern numbers. �

4. From geometry to number theory: Relations of Eisenstein series

In this section we explain how the rigidity theorem for the elliptic genus of level N
yields curious identities for products of Eisenstein series for Γ1(N). Thereby, we prove
Theorem 1.3. As an example, we also give an infinite family of relations coming from the
rigidity of CPn.

Let (M, J) be a compact, connected, almost complex manifold of dimension 2n whose
first Chern class is divisible by N . Suppose that a circle S1 acts effectively on M, and that

the fixed point set MS1
is non-empty and discrete. Let w1(P ), . . . , wn(P ) ∈ Z denote the

weights at a fixed point P ∈ M
S1
. Our assumption on the fixed point set of the S1-action

implies that all the weights are non-zero, compare to Section 2.1. We now come to the
proof of Theorem 1.3.

Proof of Theorem 1.3. Consider the Laurent series

FN (x) :=
QN (x)

x
,

where QN (x) is the power series defined in (2.16) for the elliptic genus ϕN (M) of level N .
The equivariant elliptic genus of level N associated to M is given for 1 6= t = e2πiz ∈ S1 as

ϕN (M, t) =
∑

P∈MS1

FN (2πiw1(P )z) · · ·FN (2πiwn(P )z) ,

4An alternative proof of this fact is given by Proposition 3.1, as CPn admits a toric action.



36 K. BRINGMANN, A. CAVIEDES CASTRO, S. SABATINI, M. SCHWAGENSCHEIDT

compare to Section 2.9. The rigidity theorem, Theorem 2.17, asserts that ϕN (M, t) is
actually independent of t ∈ S1. In particular, this implies that the non-constant Taylor
coefficients of ϕN (M, t) around z = 0 vanish. A short computation shows that the Taylor
coefficient at zk−n is explicitly given by

∑

I∈Pn(k)

GI,N (τ)
∑

P∈MS1

mI (w1(P ), . . . , wn(P ))

w1(P ) · · ·wn(P )
, (4.1)

where mI is the usual monomial symmetric polynomial. Here we also use Lemma 2.8
which states that the coefficients ak of QN (x) are given by the Eisenstein series Gk,N .
By the rigidity theorem, Theorem 2.17, the expression in (4.1) vanishes for k > n, which
finishes the proof of Theorem 1.3. �

For every I ∈ Pn(k) the coefficient ofGI,N (τ) has the following geometric interpretation.
AsmI(x1, . . . , xn) is symmetric in x1, . . . , xn, there exists a polynomial QI(y1, . . . , yn) such
that

QI(e1, . . . , en) = mI , (4.2)

where ej(x1, . . . , xn) is the elementary symmetric polynomial of degree j. By (2.5) we
obtain that for every fixed point P ,

mI(w1(P ), . . . , wn(P ))x
k = QI

(
cS

1

1 (P ), . . . , cS
1

n (P )
)
,

where x is the variable in (2.2). Then, by the localization formula (2.4), the coefficient of
GI,N (τ) can be obtained from the integral on M of the equivariant cohomology class given

by QI(c
S1

1 , . . . , cS
1

n ) ∈ H2k
S1(M;Z), namely

qI(M) :=

∫

M

QI

(
cS

1

1 , . . . , cS
1

n

)

=
∑

P∈MS1

mI (w1(P ), . . . , wn(P ))

w1(P ) · · ·wn(P )
xk−n ∈ H

2 (k−n)
S1 (pt;Z).

(4.3)

In the next subsection we give alternative formulas to compute explicitly these coeffi-
cients when M is a coadjoint orbit.

4.1. Formulas to compute the coefficients qI for coadjoint orbits. In this subsec-
tion we give additional formulas to compute the coefficients qI(M), if M is a coadjoint
orbit. Before doing so we need to recall a few standard facts, whose proofs are omitted
here (for more details and proofs we refer the reader to [15], [16, Section 4.2] [31, Section
6], [12, Section 5.3.1] and the references therein).

Let G be a compact simple Lie group with Lie algebra g. Choose a maximal torus
T ⊂ G, and denote by t its Lie algebra. We can embed t∗ in g∗ by means of a positive
definite symmetric G-invariant linear form on g. Let P0 ∈ t∗ and consider the orbit of
P0 in g∗ under the coadjoint action, OP0 = G · P0. Then it is well-known that OP0 can
be endowed with the so-called Kostant-Kirillov symplectic form ω. The natural action
of the maximal torus T on OP0 is indeed Hamiltonian with moment map given by the
composition of the inclusion OP0 →֒ g∗ followed by the projection g∗ → t∗. Moreover the
fixed point set is discrete. In order to describe the fixed point set data, which includes the
weights, we need to introduce more terminology.

Let R ⊂ t∗ be the set of roots, R+ a choice of positive roots and R0 ⊂ R+ the simple
roots. The Weyl group W of G is generated by the reflections through the hyperplanes
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orthogonal to the simple roots; we denote such reflections by sα : t
∗ → t∗, with α ∈ R0,

and the hyperplane orthogonal to α by Hα. Moreover, if P ∈ t∗ and w ∈ W , we denote
the point P “moved” by w with w(P ). Let J be a (possibly empty) subset of simple roots;
denote by 〈J〉 the set of positive roots that can be expressed as linear combinations of roots
in J and by WJ the subgroup of the Weyl group generated by reflections sα with α ∈ J .
Suppose that the chosen point P0 ∈ t∗ above lies in the (possibly empty) intersection of
hyperplanes ∩α∈JHα and is generic in this intersection, meaning that sα(P0) 6= P0 for all
α ∈ R+\〈J〉. Denote byW/WJ the set of right cosets, namelyW/WJ := {wWJ : w ∈W},
and by [w] its elements. Then the following lemma holds (see in particular [12, Section
5.3.1])

Lemma 4.1. The mapW/WJ → t∗ assigning w(P0) to [w] is well-defined and, if restricted
to the image, defines a bijection between W/WJ and the fixed point set OT

P0
. Moreover the

set of weights at w(P0) is given by w(R+ \ 〈J〉) = {w(α) : α ∈ R+ \ 〈J〉}.

Note that the above lemma also implies that the (real) dimension of OP0 is 2|R+ \ 〈J〉|.
With Lemma 4.1 it is in principle possible to compute the coefficients qI(M), if M is

a coadjoint orbit. However there is an alternative formula that makes use of the divided
difference operators, which is given in the proposition below. Before stating it we recall
the following. Denote by S(t∗) the symmetric algebra on t∗, which can be identified with
the polynomials with complex coefficients in the variables x1, . . . , xm, where {x1, . . . , xm}
is a Z-basis of the dual of the integral lattice of t∗. We extend the W -action on t∗ to an
action on the elements of S(t∗) in the natural way. Let α1, . . . , αm ∈ R0 be the simple
roots and for every j ∈ {1, . . . ,m} define ∂j : S(t

∗) → S(t∗) to be

∂jP :=
P − sj(P )

αj
,

where sj is the simple reflection sαj
. This is called the divided difference operator associ-

ated to sj := sαj
. Given w ∈ W and a reduced expression of w in terms of simple roots,

w = sj1sj2 · · · sjl , we define ∂w := ∂j1 ◦ ∂j2 ◦ · · · ◦ ∂jl . It is easy to see that such map does
not depend on the reduced expression chosen for w, and is therefore called the divided
difference operator associated to w.

We also recall that on the elements of the Weyl group there is a well-defined length
function, namely given a reduced expression of w in terms of simple reflections sj1sj2 · · · sjl,
the number of simple reflections involved is independent on the reduced expression chosen
for w, is called the length of w and is denoted by l(w). Moreover, given a right coset
[w] = {ww′ : w′ ∈ WJ}, we recall that there is a unique element in [w] with minimal
length –called minimal coset representative– and we can define l([w]) as the length of that
element. Finally, there is a unique equivalence class [w] in W/WJ with maximal length,
and this length coincides with |R+ \ 〈J〉| (see [23, Sections 1.6–1.10]). Thus we have

l([w]) = |R+ \ 〈J〉| =
dim (OP0)

2
=: n.

Proposition 4.2. Let OP0 be a coadjoint orbit of a compact simple Lie group G, where
P0 is a generic point in the intersection of hyperplanes ∩α∈JHα for some J ⊂ R0. Let 2n
be the dimension of OP0 . Denote by [w] the element with maximal length in W/WJ , where
w is a minimal coset representative. Then for every I ∈ Pn(k) we have that

qI(OP0) = ∂wmI

(
R+ \ 〈J〉

)
,
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where mI is the monomial symmetric polynomial in the variables given by the roots in
R+ \ 〈J〉.

Proof. The proof of this fact makes use of the T-equivariant cohomology ring structure
of OP0 and in particular of the so-called invariant classes and the equivariant Schubert
classes (see [31, Section 6] and [16, Subsection 6.1]).

We begin with the case in which J = ∅. Then P0 is a generic point in t∗ and the
coadjoint orbit is also called generic. Let us recall what invariant classes are. Given a
polynomial f ∈ S(t∗) of degree P we want to produce an element of H2P

T (OP0), called
invariant class (associated to f), in the following way. Let cf be the map from W to S(t∗)
defined by w 7→ w(f). Then it can be checked (see [16]) that such a map belongs to the
image of the pull-back in equivariant cohomology induced by the inclusion (OP0)

T →֒ Op0

H∗
T (OP0 ;C) → H∗

T

(
(OP0)

T ;C
)
=

⊕

P∈(OP0)
T

H∗
T (pt;C) =

⊕

w∈W

S (t∗) .

Abusing notation, we denote the corresponding element in H∗
T(OP0 ;C) by cf too. For

instance, from (2.5) and Lemma 4.1 it is easy to see that the (restrictions to the fixed
point set of) equivariant Chern classes are indeed invariant, and hence all classes of the
form Q(cT1 , . . . , c

T
n), where Q is a polynomial. In particular the class QI(c

T
1 , . . . , c

T
n) is an

invariant class, where QI is the polynomial associated to mI defined in (4.2). By (4.3)
we need to find the integral of this class on OP0 . For this purpose we use the (special)
expression of an invariant class in terms of equivariant Schubert classes. We first recall
what the latter are. For every w ∈W , the equivariant Schubert class at w, denoted by τw,

is characterized to be the unique equivariant cohomology class in H
2l(w)
T (OP0 ;C) satisfying

(i) τw(w) =
∏
{α ∈ R+ : w−1(α) ∈ −R+};

(ii) τw(w
′) = 0 for all w′ ∈W \ {w} such that l(w′) ≤ l(w).

It is well-known that the set of these classes forms a basis of H∗
T(OP0 ;C) as a module over

S(t∗). Thus for every class c ∈ H∗
T(OP0 ;C) and every w ∈ W there exists a polynomial

aw ∈ S(t∗) such that c =
∑

w∈W awτw. The coefficients aw have a special expression in
the case in which c is an invariant class. Indeed, given f ∈ S(t∗) and the corresponding

invariant class cf , Proposition 6.1 in [16] asserts that aw = (−1)l(w)∂wf .
To conclude the proof of the proposition we note that

∫
OP0

τw = 0 unless w is the longest

element w in W , in which case the localization formula in equivariant cohomology gives
that

∫
OP0

τw = (−1)l(w). (This is because the set of weights {α ∈ R+ : w−1(α) ∈ −R+}

coincides with minus the isotropy weights at w, and the restriction of the class τw at the
elements of W \{w} is zero.) Hence, since the invariant class QI(c

T
1 , . . . , c

T
n) at P0 is given

by mI(R
+), equation (4.3) gives

qI (OP0) =

∫

OP0

QI

(
cT1 , . . . , c

T
n

)
=
∑

w∈W

(−1)l(w)∂wmI(R
+)

∫

OP0

τw = ∂wmI

(
R+
)
.

We only hint at the proof of this proposition in the case in which P0 is not generic: for
partial coadjoint orbits, equivariant Schubert classes are also defined and mutatis mutandis
satisfy properties (i) and (ii) above. Moreover [16, Proposition 6.1] admits a generalization
to partial coadjoint orbits, and the claim follows similarly. �

Example 4.3

(1) For SU(n + 1) the root system is of type An and a choice of simple roots is given
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by R0 = {x1 − x2, x2 − x3, . . . , xn − xn+1}. If J = R0 \ {x1 − x2} it is well-known that
the corresponding coadjoint orbit is CPn. In this case the longest equivalence class in
W/WJ has minimal coset representative given by snsn−1 · · · s1, where sj := sxj−xj+1 for

all j ∈ {1, . . . , n}; moreover R+ \ 〈J〉 = {x1 − x2, x1 − x3, . . . , x1 − xn}. Hence for every
partition I ∈ Pn(k) Proposition 4.2 gives

qI(CP
n) = ∂n∂n−1 · · · ∂1mI(x1 − x2, x1 − x3, . . . , x1 − xn) .

(2) For SO(2n + 1) the roots system is of type Bn and a choice of simple roots is given
by R0 = {x1 − x2, . . . , xn−1 − xn} ∪ {xn}. If J = R0 \ {x1 − x2} it is well-known that the
corresponding coadjoing orbit is Gr+2 (R

2n+1), the Grassmannian of oriented two planes in
R2n+1. This is a symplectic manifold of dimension 2(2n − 1). Let sj be sxj−xj+1 for all
j ∈ {1, . . . , n−1} and sn := sxn . Then the longest equivalence class inW/WJ has minimal
coset representative given by s1 · · · sn−1snsn−1 · · · s1 and R+ \ 〈J〉 = {x1 − x2, . . . , x1 −
xn, x1+x2, . . . , x1+xn, x1}. Then Proposition 4.2 gives in this case that for every partition
I ∈ P2n−1(k)

qI
(
Gr+2

(
R2n+1

))

= ∂1 · · · ∂n−1∂n∂n−1 · · · ∂1mI(x1 − x2, . . . , x1 − xn, x1 + x2, . . . , x1 + xn, x1) .

4.2. Explicit computation of relations among Eisenstein series. In this subsection
we show that the manifold CPn and the vanishing of its elliptic genus ϕN (CPn, t), for
every N | (n+1), can be used to derive explicit relations among Eisenstein series for every
n ≥ 1.

Proposition 4.4. For N ≥ 2 dividing (n+ 1) and k ≥ n we have

(−1)n+k+1
∑

0≤j1,...,jn≤k
j1+...+jn=k

Gj1,N · · ·Gjn,N =

n−1∑

ℓ=0

(
k − ℓ− 1

n− ℓ− 1

)
Gk−ℓ,N

∑

0≤j1,...,jn≤ℓ
j1+...+jn=ℓ

Gj1,N · · ·Gjn,N .

Proof. As mentioned above, we want to use the vanishing of the elliptic genus ϕN (CPn, t),
for every N ≥ 2 dividing (n+1) (for the vanishing statement see [22] and Proposition 3.1,
since CPn can be endowed with a toric action), to derive the above relations. In order
to compute the coefficients qI(CP

n) we have two possibilities: one is to use directly the
localization formula (4.3), and another one is to use Proposition 4.2 (see Example 4.3 (1)).
In this proposition, we first used the localization formula and a trick involving a residue
calculation to guess what the coefficients are. After guessing them, we found a number
theoretical proof of the above identity which is given below. Note that, however, the use
of the rigidity theorem, and in particular of Theorem 1.3, plays the essential role of finding
what the right coefficients in the identity are.

By definition, the power series for the elliptic genus of level N is given by

QN (x) = xη3
ϑ
(

x
2πi −

1
N

)

ϑ
(

x
2πi

)
ϑ
(
− 1

N

) =

∞∑

j=0

ajx
j ,
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where we omit the τ -variable for brevity. Recall that aj = Gj,N is an Eisenstein series by
Lemma 2.8. For k ≥ n we define the power series

Pn,k(x) =
1

(k − n)!
xk−n+1 d

k−n

dxk−n

QN (x)

x
= (−1)k+n +

∞∑

j=k−n+1

(
j − 1

k − n

)
ajx

j.

Then the formula in the proposition is equivalent to showing that the coefficient at xk of
the power series Pn,k(x)QN (x)n vanishes. We have

(k − n)!Pn,k(x)QN (x)n = xk+1

(
dk−n

dxk−n

QN (x)

x

)(
η3

ϑ
(

x
2πi −

1
N

)

ϑ
(

x
2πi

)
ϑ
(
− 1

N

)
)n

and thus it suffices to show that the residue at x = 0 of the function(
dk−n

dxk−n

ϑ
(
x− 1

N

)

ϑ (x)

)(
ϑ
(
x− 1

N

)

ϑ (x)

)n

vanishes. Using the elliptic transformation behavior (2.13) it is easy to check that the
above function is invariant under the lattice Zτ + Z if N | (n + 1). Hence the sum of its
residues in a fundamental domain for C/ (Zτ + Z) vanishes. But the function also has a
unique pole at x = 0, hence its residue there has to vanish. This completes the proof. �

The fact that the above proposition has a simple proof seems to correspond to the fact
that CPn is very symmetric. However, the rigidity of the elliptic genus yields many more
relations of Eisenstein series which do not seem to have such simple proofs.
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